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1.1 Vector Space (Linear Space)

1. Euclidean Space

In Euclidean space Rp, given a vector x = (x1, x2, . . . , xp) ∈ Rp, y = (y1, y2, . . . , yp) ∈ Rp, the vector
operations are defined as

x+ y = (x1 + y1, x2 + y2, . . . , xp + yp)

c · x = (cx1, cx2, . . . , cxp)

2. Inner Product

The inner product of two vectors is defined as

< x, y >A= xTAy,

where A is symmetric and positive definite. The norm of vectors

||x||A =
√
< x, x >A =

√
xTAx

Examples: 1. A = I; 2. A = Σ (covariance matrix); 3. A = Σ−1

3. Angle between vectors:

cos(αxy) =
< x, y >

||x||||y||
Cauchy-Schwartz inequality:

| < x, y > | ≤ ||x|| · ||y||

4. Column space of a matrix:

Given a matrix Vp×q = (v1, v2, . . . , vq), the column space is defined as

Lcol(V) = {w : w =

q∑
i=1

vici} = {w = Vc}

5. Orthogonal basis:

Assume v1, v2, . . . , vq are linearly independent, then we can always find an orthogonal set (γ1, γ2, . . . , γq), γi ∈
Rp, s.t. V = ΓCq×q, where C is invertible.
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6. Orthogonal space (null space):

L⊥
col(V) = {w :< w, vi >= 0, i = 1, 2, . . . , q} = {w :< w, v >= 0, ∀v ∈ Lcol(V)}

For Euclidean space, L⊥
col(V) = {w : wTV = 0}.

Theorem 1.1 Let Xp×r = (x1, . . . , xr), then Lcol(X) = Lcol(XXT ).

Proof:
(1) Lcol(XXT ) ⊆ Lcol(X)

(2) Lcol(X) ⊆ Lcol(XXT )⇔ L⊥
col(XX

T ) ⊆ L⊥
col(X)

For ∀w ∈ L⊥
col(XX

T ), wTxxT = 0⇒ wTxxTw = 0⇒ wTx = 0.

1.2 Rank of a Matrix

Definition 1.2 rank(Xp×r) = dimLcol(X)

Facts:

(1) rank(X)=rank(XT )

(2) Suppose Bp×p, Cq×q are both nonsingular, then rank(BXC)=rank(X).

(3) rank(XXT )=rank(X)=rank(XTX)

Remark: Let X =

 vT1
...
vTp

, then G = XXT = (vTi vj)ij is called ”Gram Matrix”.

1.3 Random Vectors

Given probability space L2(Ω,F ,P), zi, zj ∈ L2 (square integrable), E[|zizj |] <∞, z =

 z1
...
zp

.

• Covariance matrix: Σ = Cov(z, z)⇔ Σij = σij = Cov(zi, zj).

• Linear functions: x ∈ Rp, X = xT z =
∑p
i=1 xizi.

• Inner product: < X ,Y >= Cov(X ,Y) = xTΣy, where X = xT z,Y = yT z, and x, y are constant
vectors.

Recall that: 1. Cov(az1, z2) = a Cov(z1, z2); 2. Cov(z1 + z2, z3) = Cov(z1, z3) + Cov(z2, z3)

• Length: ||X || =
√
< X ,X > =

√
xTΣx



• Angle: αXY = cos−1( <X ,Y>
||X ||·||Y|| )

Remark: z takes value in Rp , it is possible that z takes value in a subspace of Rp.

Example: Suppose z ∼ multinomial(n, π)/n, zi ∈ [0, 1], and π = (π1, . . . , πp) is the probability, i.e.
π1 + . . .+ πp = 1.

1. What is the Σ of z?

2. 1 ∈ L⊥
col(Σ).
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2.4 Projection

Suppose Vn×p = (v1, v2, . . . , vp) is of rank p < n. For ∀y ∈ Rn, we want to decompose y into y = ŷ + y⊥,
where ŷ ∈ Lcol(V ), y⊥ ∈ L⊥

col(V ).

ŷ = V β̂ =

p∑
i=1

β̂ivi, β̂ ∈ Rp

V T y = V T ŷ + V T y⊥ = V T ŷ = V TV β̂ ⇒ β̂ = (V TV )−1V T y

which is the linear regression estimator.

ŷ = V β̂ = V (V TV )−1V T y = P̂ y

we call P̂ = V (V TV )−1V T projection matrix.

y⊥ = y − ŷ = (I − P̂ )y ⇒ P⊥ := I − P̂
Hence P̂ is the projection matrix into Lcol(V ), P⊥ is the projection matrix into Lcol(V ⊥).

Properties of projection matrix:
(i) P̂ and P⊥ are symmetric;
(ii) P̂ 2 = P̂ · P̂ = P̂ ;
(iii) Lcol(P̂ ) = Lcol(V );
(iv) rank(P̂ )=p, rank(P⊥)=n-p;
(v) ŷT y⊥ = 0⇔< ŷ, y⊥ >= 0;
(vi) ||ŷ||2 = yT P̂ y, ||y⊥||2 = yTP⊥y ⇒ ||y||2 = ||ŷ||2 + ||y⊥||2;
(vii) cos2(αy,ŷ) =

||ŷ||2
||y||2 = yT P̂ y

yT y
, αy,ŷ = min{αy,w : ∀w ∈ Lcol(V )}.

(viii) Eigenvalues of P̂ are either 0 or 1.
–Geometrical intuition: An eigenvector of projection matrix, with nonzero eigenvalue, is in the column space
of this projection matrix both before and after the transformation. The projection matrix P̂ project every
vector into Lcol(P̂ ). The only vectors that are still in their original column space after being projected into
Lcol(P̂ ) are those which are already in Lcol(P̂ ), with eigenvalue = 1 since their lengths do not change. For
vectors in Lcol(P̂⊥) are also the eigenvectors of P̂ since after projection they become a dot in Lcol(P̂⊥), with
eigenvalue = 0.
In other words, if w ∈ Lcol(P̂ ) then P̂w = w. If w ∈ Lcol(P̂⊥) then P̂w = 0.
–Mathematical proof: Note that P̂ 2 = P̂ and therefore ∀v:

λ2v = P̂ (λv) = P̂ (P̂ v) = P̂ v = λv ⇒ λ2 = λ⇒ λ = 0 or 1

(ix) Vn×p = (v1, v2, ..., vn),Γ = (γ1, γ2, ..., γn) where γi are all orthogonal to each other with Lcol(V ) =

Lcol(Γ) Porjection matrix is P̂ = V (V ⊤V )−1V ⊤ = ΓΓ⊤. Also when p < n we have ΓΓ⊤ ̸= I.
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2.5 Projection matrix in a general metric

We define ⟨y, v⟩A = y⊤Av. Vector y can be written as y = ŷ + y⊥. Then ŷ can be written as ŷ = V β̂.

⟨y, v⟩ = ⟨ŷ, v⟩+ ⟨y⊥, v⟩ = ⟨ŷ, v⟩ ⇒ V ⊤Ay = V ⊤AV β̂ ⇒ β̂ = (V ⊤AV )−1V ⊤Ay

Thus we get,
ŷ = V β̂ = V (V ⊤AV )−1V ⊤Ay = V ⟨V, V ⟩−1⟨V, y⟩

Exercise: Verify the Pythagorean theorem:

||y||2 = ||ŷ||2 + ||y⊥||2

2.6 Linear Prediction

Assume Y to be a random variable and V = (V1, V2, ..., Vp) where vi is a random variable. Assume that
E[Y ] = E[Vi] = 0. Define ⟨X,Y ⟩ = cov(X,Y ).
How to find a linear prediction of of (V1, V2, ..., Vp) such that best predict V ?

”Best”: norm of residual is smallest ⇒ variance of residual is smallest, i.e., Ŷ should be the projection of Y
on V .
According to the conclusion in Section 1.7,

Ŷ = V ⟨V, V ⟩−1⟨V, Y ⟩ = V σ−1
V V σV Y

Properties of Linear Prediction:

1. Ŷ , Y ⊥ is uncorrelated since ⟨Ŷ , Y ⊥⟩ = 0 (The reverse direction is true as well).

2. Var(Ŷ ) = ⟨Ŷ , Ŷ ⟩ = σY V σ
−1
V V σV Y .

Proof: Ŷ = β̂V where β̂ = σY V σ
−1
V V .

Then, Var(Ŷ ) = Var(β̂V ) = β̂Var(V )β̂T = σY V σ
−1
V VVar(V )σ−1

V V σV Y = σY V σ
−1
V V σV Y

Subsequently, Var(Y ⊥) = Var(Y )−Var(Ŷ ) = σY Y − σY V σ−1
V V σV Y

3. Var(Y ⊥) = minβ∈Rp Var(Y − V β)

4. Var(Ŷ )
Var(Y ) =

σY V σ
−1
V V σV Y

σY Y
= ρ2Y |V1,V2,...,Vp

= R2. R2 is the multiple correlation coefficient between Y and

(v1, v2, ..., vp).
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2.7 Gram-Schimdt Orthogonalization

Vn×p = (v1, v2, ..., vn), denote: Vj = (v1, v2, ..., vj) and Pj = Vj(V
⊤
j Vj)

−1V ⊤
j

Algorithm:

• Let W1 = V1/||V1||

• V ⊥
2 = (I − P̂1)V2, W2 = V ⊥

2 /||V ⊥
2 ||

......

• V ⊥
j = (I − P̂j−1)Vj , Wj = V ⊥

j /||V ⊥
j ||

......

• V ⊥
p = (I − P̂p−1)Vp, Wp = V ⊥

p /||V ⊥
p ||

Let’s change the direction of expression

• V1 = U11W1

• V2 = U12W1 + U22W2

......

• Vj = U1jW1 + ...+ UjjWj

......

• Vp = U1pW1 + ...+ UppWp

V =WU ⇒ QR Decomposition, where WTW = Ip, Up×p upper triangle

2.8 Gram Matrix and Projection

Gram matrix: Gij = ⟨xi, xj⟩
Assume

Vn×(p1+p2) = (V1, V2), G = V TV =

(
V T1 V1 V T1 V2
V T2 V1 V T2 V2

)
=

(
G11 G12

G21 G22

)
Let’s consider the projection of V2 to V1

P̂1 = V1(V
T
1 V1)

−1V T1 = V1G
−1
11 V

T
1 P⊥

1 = I1 − P̂1

V̂2 = P̂1V2 = V1G
−1
11 V

T
1 V2 = V1G

−1
11 G12 V ⊥

2 = P⊥
1 V2

Then,

G22 = V T2 V2 = (V̂2 + V ⊥
2 )T (V̂2 + V ⊥

2 ) = V̂ T2 V̂2 + (V ⊥
2 )TV ⊥

2 = ⟨V̂2, V̂2⟩+ ⟨V ⊥
2 , V

⊥
2 ⟩

V̂ T2 V̂2 = (V2 − V ⊥
2 )T V̂2 = V T2 V̂2 = V T2 P̂1V2 = V T2 V1G

−1
11 V

T
1 V2 = G21G

−1
11 G12

(V ⊥
2 )TV ⊥

2 = G22 −G21G
−1
11 G12



2.8.1 Application to Linear Predictions

Assume E[Y1] = E[Y2] = 0, dim(Y1) = p1 and dim(Y2) = p2, and we want to use Y1 (a group of random
variables) to predict Y2 (another group of random variables):

Σ =

〈(
Y1
Y2

)
,

(
Y1
Y2

)〉
= Cov

((
Y1
Y2

)
,

(
Y1
Y2

))
=

(
Σ11 Σ12

Σ21 Σ22

)
(p1+p2)×(p1+p2)

Ŷ2 = Σ21Σ
−1
11 Y1 Y ⊥

2 = Y2 − Ŷ2
Σ⊥

22 = Cov(Y ⊥
2 ) = Σ22 − Σ21Σ

−1
11 Σ12, partial covariance matrix of Y2 after linear regression on Y1
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3.9 Determinants

Definition 3.3 Given a square matrix Ap×p =


...

...
a1 · · · ap
...

...

, the determinant of A is

det(A) = |A| =
∑
π

sgn(π)A1π(1)A2π(2) · · ·Apπ(p)

where π denotes all possible permutations.

3.9.1 Properties of determinants

1. For any upper triangular matrix Up×p, |Up×p| =
∏n
i=1 uii

2. |AT | = |A|

3.

∣∣∣∣∣∣∣∣
...

...
...

...
a1 a2 · · · c · aj · · · ap
...

...
...

...

∣∣∣∣∣∣∣∣ = c|A|, |cA| = cp|A|

4.

∣∣∣∣∣∣∣∣
...

...
...

...
...

a1 a2 · · · aj · · · ai · · · ap
...

...
...

...
...

∣∣∣∣∣∣∣∣ = −|A|, where i < j, swap ai and aj

5.

∣∣∣∣∣∣∣∣
...

...
...

...
a1 · · · ai + aj · · · aj · · · ap
...

...
...

...

∣∣∣∣∣∣∣∣ = |A|
6. |Ap×pBp×p| = |A||B| ⇒ |A−1| = 1

|A| ; if A is an orthogonal matrix, ATA = I ⇒ |A| = ±1

7. |Ap×p| = 0 if and only if rank(A) < p

8.

∣∣∣∣Ap×p 0
Cq×p Dq×q

∣∣∣∣ = |A| · |D|
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9.

∣∣∣∣Ap×p Bp×q
Cq×p Dq×q

∣∣∣∣ =
{
|D| · |A−BD−1C|, if rank(D) = q

|A| · |D − CA−1B|, if rank(A) = p

Proof: (
A B
C D

)
=

(
A−BD−1C B

0 D

)(
Ip 0

D−1C Iq

)

10. |Ip +Ap×qBq×p| =|Iq +Bq×pAp×q|
Proof: Apply property 9 to ∣∣∣∣ Ip −Ap×q

Bq×p Iq

∣∣∣∣
(Exercise) ∣∣∣∣∣∣∣∣∣

1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

∣∣∣∣∣∣∣∣∣ = (1− ρ)n−1 [1 + (n− 1)ρ]

3.9.2 Geometric Interpretation of Determinant

Recall

det(A) = |A|, A =


...

...
...

a1 a2 · · · ap
...

...
...


p×p

Geometric meaning:

|det(A)| = p-dimensional volume of the parallelogram consisting of {a⃗1, a⃗2, · · · , a⃗p}

Example: Consider

A =


...

...
a1 a2
...

...

 =

(
2 −1
1 1

)

|A| = 3

The change in volume is shown in Figure 3.1.

QR Decomposition:

A =WU , where W is orthogonal basis, U is upper triangular.

|A| = |W ||U | = ±|U | = ±
p∏
i=1

uii
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Figure 3.1: det(A) = 3

Figure 3.2: |a1, a2| = |a1, a1 + a2|
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Example. ∀a1, a2 ∈ R2, |a1, a2| = |a1, a1 + a2|. Geometric interpretation as shown in Figure 3.2: Red
Area = Blue Area.

3.10 Jacobian

Motivation for Jacobian: Suppose random variable X has density function f(x). X̃ = m(X), where m is a
1-1 map from Rn → Rn. What’s the density function f̃(x̃) for X̃ ?

Definition 3.4 Suppose X̃ = m(X), where m is a 1-1 map from Rn → Rn.

M(X) =

(
∂x̃i
∂xj

)
ij

M−1(X) =

(
∂xi
∂x̃j

)
ij

Jacobian

J(X → X̃) =
∣∣det(M−1(X))

∣∣ = ∣∣∣∣det( ∂xi∂x̃j

)∣∣∣∣
Then, for our problem in random variable

f̃(x̃) = f(x) · J(X → X̃)

3.10.1 Intuitive Sense: why use Jacobian (determinant)?

Example. Consider n = 2 as shown in Figure 3.3, where

e⃗1 = (1, 0) e⃗2 = (0, 1)

dx = (dx1, dx2)

M = (M⃗1, M⃗2) =

(
∂x̃1

∂x1

∂x̃1

∂x2
∂x̃2

∂x1

∂x̃2

∂x2

)
M(x+ e⃗1dx1) ≈ x̃+ M⃗1dx1 + o(dx1) by Taylor Expansion

V ol(Ã) = det


...

...
M1dx1 M2dx2

...
...

 =

(
n∏
i=1

dxi

)
· |det(M)|

Probability mass:

f(x)V ol(A) = f̃(x̃)V ol(Ã)

⇒ f̃(x̃) = f(x) · V ol(A)
V ol(Ã)

V ol(Ã) = det(M1dx1,M2dx2) = (Πni=1dxi) · |det(M)| = V ol(A) · |det(M)|

⇒ f̃(x̃) = f(x) · 1

|det(M)|
= f(x) · det(M−1)
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Figure 3.3: n=2
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Example. 1-d space (n-d space):

∫
f̃(x̃)|dx̃| =

∫
f(x)|dx|

⇔ f̃(x̃)|dx̃| = f(x)|dx|

⇔ f̃(x̃) = f(x)
|dx|
|dx̃|

Classical Example. Polar system.

Figure 3.4: Polar coordinates

Figure 3.5: Polar to Cartesian
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x1 = ρ cos θ1

x2 = ρ sin θ1cosθ2

...

xn−1 = ρ sin θ1 cos θ2 · · · sin θn−1 cos θn−1

xn = ρ sin θ1 · · · sin θn−1

where ρ ≥ 0, 0 ≤ θi ≤ π, θn−1 ∈ [0, 2π].

Calculate: J(X → (ρ, θ1, θ2, ..., θn−1)) = ρn−1 sinn−2 θ1 sin
n−3 θ2 · · · sin θn−2

Proof: Math induction on Jn = ρ sinn−2 θ1Jn−1

3.11 Integral Jacobian: X
m−→ X̃

Example (Motivation) X1, X2, ..., Xn
i.i.d∼ f(x), what is the density of :

(1) x1 + x2 + ...+ xn
(2) x21 + x22 + ...+ x2n

(3) Other many to one mapping

Definition 3.5 X
m→ Y1. We can find Y2 , such that the mapping X → (Y1, Y2) is one-to-one. The integral

Jacobian of X → Y1 is defined as

J(X → Y1) =

∫
y2

J(X → (Y1, y2))dy2

Lemma 3.6

J(X → Y1) = lim
dy1→0

V ol(m−1([y1, y1 + dy1]))

V ol([y1, y1 + dy1])

Example. Suppose Y1 = m(X), X is 2-dimensional (n = 2), and Y1 is scalar. (See Figure 3.6)

Ã = {(ỹ1, ỹ2) : ỹ1 ∈ [y1, y1 + dy1]}
A = {x : m(x) ∈ [y1, y1 + dy1]} = m−1(Ã)⇔ Ã = m(A)

Jacobian = lim
dy1→0

V ol(A)

V ol(Ã)
= lim
dy1→0

V ol(m−1([y1, y1 + dy1]))

V ol([y1, y1 + dy1])

Lemma 3.7 Suppose X
m→ Y1, X has density fX(x) = g ◦ m(x) = g(m(x)) = g(y1). Then the density

function of Y1 is

fY1(y1) = g(y1)J(X → y1)

Example. X1, X2, ..., Xn
i.i.d∼ N (0, 1), ρ =

√
X2

1 + ...+X2
n, what’s density of ρ?

Solution.
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Figure 3.6:

fX(x) =

n∏
i=1

(
1√
2π
e−

1
2x

2
i

)
=

(
1√
2π

)n
e−

1
2

∑
x2
i

= (2π)
−n

2 e−
1
2ρ

2

From lemma, we have

fρ(ρ) = (2π)−
n
2 e−

1
2ρ

2

J(X → ρ)

Using polar system, we can show that

J(X → ρ) =

∫
J(X → (ρ, θ1, · · · , θn−1))dθ1 · · · dθn−1

= ρn−1 2πn/2

Γ(n/2)

So,

fρ(ρ) =
ρn−1e−

1
2ρ

2

2
n
2 −1Γ(n/2)

∼ χn

Proof: (of Lemma 3.7)
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Consider X →
(
Y1

Y2

)
such that it is one-to-one. By definition,

fY1(y1) =

∫
fY1,Y2(y1, y2)dy2

=

∫
fX(x)J(X → (y1, y2))dy2

=

∫
g(m(x))J(X → (y1, y2))dy2

=

∫
g(y1)J(X → (y1, y2))dy2

= g(y1)

∫
J(X → (y1, y2))dy2

= g(y1)J(X → (y1)

Remark: In one-to-one mapping of m,

fY1(y1) = fX(m−1(y1))J(X → y1)

Trick: Reverse Lemma 3.7 to find Jacobian.

J(X → Y1) =
fY1(y1)

fX(x)

provided that fX(x) = g(y1).

Example. X = (X1, X2, . . . , Xn), m : (R+)n → R+ maps X to S =
∑n
i=1Xi, . What is J(X → S)?

Solution. Reverse Lemma 3.7. Consider X1, X2, . . . , Xn
iid∼ exp(1), f(x) = e−x. Then, S = X1 +X2 +

· · ·+Xn ∼ Γ(n, 1).

fS(s) =
1

Γ(n)
sn−1e−s

fX(x) = Πni=1e
−xi = e−

∑n
i=1 xi = e−s

J(X → S) =
fS(s)

fX(x)
=
sn−1

Γ(n)

Lemma 3.8 Chain rule of Integral Jacobian. If X
1−1→ (Y1, Y2), Y

1−1→ (Z1, Z2), then J(X → Z1) =
J(X → Y1) · J(Y1 → Z1).
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Proof: Consider X
1−1→ (Z1, Z2, Y2). Using definition,

J(X → Z1) =

∫ ∫
J(X → (Z1, z2, y2))dz2dy2

J(X → Y1) =

∫
J(X → (Y1, y2))dy2

J(Y1 → Z1) =

∫
J(Y1 → (Z1, z2))dz2

J(X → Y1) · J(Y1 → Z1) =

∫ ∫
J(X → (Y1, y2)J(Y1 → (Z1, z2))dz2dy2

=

∫ ∫
J(X → (Z1, z2, y2))dz2dy2

= J(X → Z1)

where the second last equality is using standard chain rule for Jacobian.
Remark: We can also use Lemma 3.6 with the intuition that as dz1 → 0, dy1 → 0.

J(X → Z1) = lim
z1→0

V ol(B)

V ol(Ã)
= lim
y1→0

V ol(A)

V ol(Ã)
lim
z1→0

V ol(B)

V ol(A)

Lemma 3.9 (Hsu’s Lemma) Xn×p
m→ Sp×p = XTX.

J(X → S) =
π

np
2 − p2

4 + p
4

Πpj=1Γ(
n−j+1

2 )
|det(S)|

n−p+1
2

Proof: Use the trick of inverting Lemma 3.7.

3.12 Spectral Decomposition (Eigendecomposition)

Suppose Ap×p is a real-valued, symmetric with rank K. Then A can always be decomposed as

Ap×p = Γp×kΛΓ
T
k×p

where Γ =


...

...
...

r1 r2 . . . rk
...

...
...

 is orthogonal matrix ΓTΓ = Ik

Λ = diag(λ1, λ2, · · ·λk), where λi ̸= 0(i = 1, 2, · · · k)

We can find Eigenvalues (λi) and Eigenvectors (ρi ) as follows.

AΓ = (ΓΛΓT )Γ = ΓΛ⇔ Aρi = λiρi

, where i = 1, 2, · · · k. Also, we can know Lcol(A) = Lcol(Γ)
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3.13 Trace of matrix

Trace of p× p matrix B is defined as

tr(B) =

p∑
i=1

Bii

Based on the definition of the trace matrix, we can swap the order of matrix multiplication as below.

tr(Ap×qBq×p) = tr(Bq×pAp×q) =
∑
i

∑
j

AijBji

Suppose A is symmetric, we can calculate the spectral sum by using the trace property

tr(A) = tr(ΓΛΓT ) = tr(ΓTΓΛ) = tr(Λ) =

k∑
i

λi

Special case: Suppose Pn×n is a projection matrix into k − dim linear space. (tr(P ) = k)

1. k-dimensional linear space = Lcol(X)

P = X(XTX)−1XT

QR decomposition on X, where X = Γp×kU

P = ΓΓT → tr(P ) = tr(ΓΓT ) = tr(ΓTΓ) = tr(Ik) = k

2. P must have eigenvalues 0 or 1

3.14 Matrix square root

Let S2 = A, where A is positive semi-definite.

(1) Symmetric square root: Suppose Ap×p is symmetric positive semi-definite and rank(A) = k, then
the solution to S2 = A is

1. Sp×p = ΓΛ
1
2ΓT , where Λ

1
2 = diag(

√
λ1,
√
λ2, · · ·

√
λk) or

2. Sk×p = Λ
1
2ΓT

We have STS = ΓΛΓT = A in both case. We can see S and A share eigenvectors and also have close
relationship as for eigenvalues 1

2

(2) Upper triangular square root: UTU = Ap×p

• S = Λ
1
2ΓT =WU , where W is orthogonal

• A = STS = UTWTWU = UTU



3.15 Singular Value Decomposition (SVD)

While spectral decomposition can be used only for square matrix, SVD can be used for any matrix.

For any An×p with rank k, An×p = Un×kDk×kV
T
k×p, where Un×k, Vp×k are orthogonal (⇔ UTU =

Ik V TV = Ik) and D = diag(d1, d2 · · · dk), where di > 0. Furthermore, we can arrange them such that
d1 ≥ d2 ≥ · · · dk. Here, d1 · · · dk are singular values, U = (u1 · uk)n×k components are left singular vectors,
V = (v1 · vk)p×k components are right singular vectors.

U and V are not unique (−U), (−V ). So you can put a sign in any column of U and V

(AAT )n×n = (UD2UT )n×n and (ATA)p×p = (V D2V T )p×p. Then we have d2i to be the eigenvalues of
ATA or AAT , which also explains that eigenvectors of ATA or AAT should be columns of U and V .

Proof: Let AAT is symmetric positive semi-definite. Spectral decomposition gives AAT = UΛUT . Let
D = Λ

1
2 and V T = D−1UTA. Now we show U , D, V satisfy the requirements.

1. U is orthogonal

2. D is orthogonal

3. We have to check V is orthogonal.

V TV = D−1UTAATUD−1 = Ik

4. A = UDV T = UDDTUTA = UUTA = A

UUT is the projection matrix onto Lcol(U)⇔ Lcol(U) = Lcol(AAT ) = Lcol(A). Then, UUTA = A.

3-12
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5.16 Matrix Theory Review (continued)

5.16.1 Pseudo-inverse X− (continued)

Pseudo-inverse can be applied to solving linear systems

η = Xβ

where it assumes η ∈ Lcol(X).
Claim: β0 = X−η is a solution.
Verify: Xβ0 = XX−η = η because XX− is the projection matrix into Lcol(X).
* Exercise (in the case n < p): in the case of multiple solutions, β0 is the shortest solution in terms of the
length ||β||.
* What if Xβ ≈ y, y /∈ Lcol(X), n >> p. (consider linear regression)

β̂ = X−y = (X⊤X)−1X⊤y,

then Xβ̂ = XX−y = P̂ y = ŷ is projection of y into Lcol(X).

5.16.2 Orthogonal Representation of X

Suppose X has the following SVD decomposition

X = UDV ⊤ =
(
u1, · · · , uk

)d1 . . .

dk


v

⊤
1
...
v⊤k

 ,

where
Un×k = (u1, u2, · · · , uk), ui ∈ Rn,

Vp×k = (v1, v2, · · · , vk), vi ∈ Rp,

D = diag(d1, d2, · · · , dk), d1 ≥ d2 ≥ · · · ≥ dk > 0,

k = rank(X).

Then

X =

k∑
j=1

ujdjv
⊤
j .

Let Bj = ujv
⊤
j . Bj is (n× p) matrix, rank(Bj) = 1. We have

X =

k∑
j=1

djBj .
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• Bj are orthogonal to each other, and ||Bj || = 1.
Proof: ∀i ̸= j,< Bi, Bj >= 0

⇔
∑
l,m

(Bi)lm(Bj)lm = tr(B⊤
i Bj) = tr(viu

⊤
i ujv

⊤
j ) = tr(u⊤i ujv

⊤
j vi) =

{
0, if i ̸= j,

1, if i = j.

Define X̂(J) =
∑J
j=1 djBj , J ≤ k, rank(X̂(J)) = J . X̂(J) is an approximation to X with the following

properties:

1. ||X − X̂(J)||2 =
∑k
j=J+1 d

2
j ;

2. ||X−X̂(J)||2
||X||2 =

∑k
j=J+1 d

2
j∑k

j=1 d
2
j

(percentage).

Example: Xn×p, k = p but X̂(p− 1) approximates X very well, then X has multi-collinearity.

5.16.3 Block matrix inversion

Consider block matrix

A(p+q)×(p+q) =

(
A11p×p A12p×q

A21q×p A22q×q

)
,

where A11, A22 are invertible, then we have

A−1 =

(
A−1

11 +A−1
11 A12(A22 −A21A

−1
11 A12)

−1A21A
−1
11 −A−1

11 A12(A22 −A21A
−1
11 A12)

−1

−A−1
22 A21(A11 −A12A

−1
22 A21)

−1 (A22 −A21A
−1
11 A12)

−1

)
.

5.16.3.1 Woodbury’s formula

Suppose Ap×p, Bq×q are both non-singular, then

(Ap×p + Up×qBq×qVq×p)
−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1.

Proof: Assume we are trying compute (
A U
V B

)−1

.

We can do a column elimination first and then a row elimination to make the matrix diagonal. Specifically,
by column operation: (

I 0
−V A−1 I

)(
A U
V B

)
=

(
A U
0 B − V A−1U

)
.

By row operation: (
A U
V B

)(
I −A−1U
0 I

)
=

(
A 0
V B − V A−1U

)
.

Then it follows (
I 0

−V A−1 I

)(
A U
V B

)(
I −A−1U
0 I

)
=

(
A 0
0 B − V A−1U

)
=⇒

(
A U
V B

)−1

=

(
A−1 +A−1U(B − V A−1U)−1V A−1 −A−1U(B − V A−1U)−1

−(B − V A−1U)−1V A−1 (B − V A−1U)−1

)
. (1)

On the other hand, we can also do row elimination first and then column elimination. It follows that(
A U
V B

)
=

(
I UB−1

0 I

)(
A− UB−1V 0

0 B

)(
I 0

B−1V 0

)
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=⇒
(
A U
V B

)−1

=

(
(A− UB−1V )−1 −(A− UB−1V )−1UB−1

−B−1V (A− UB−1V )−1 B−1 +B−1V (A− UB−1V )−1V B−1

)
. (2)

Note that the right-hand-side of (1) and (2) should be equal. The equality of left-upper block gives Wood-
bury’s formula.

For special case when q = 1:

(A+ bUV )−1 = A−1 − A−1UV ⊤A−1

b+ V ⊤A−1U
.

5.16.3.2 Statistical application of block matrix inversion

Consider

X =

(
X1

X2

)
, Σ = Var(X) =

(
Σ11 Σ12

Σ21 Σ22

)
.

Using block matrix inversion, we have

(Σ)−1
22 = (Σ22 − Σ21Σ

−1
11 Σ12)

−1 = (Σ⊥
22)

−1,

where the right-hand-side represents the conditional variance of X2 conditioning on X1.
* Exercise: it is known that Σij = 0 ⇔ Cov(Xi, Xj) = 0. Show that (Σ−1)ij = 0 ⇔ Xi, Xj have partial
correlation of 0 after projecting on X1, ..., Xi−1, Xi+1, ..., Xj−1, Xj+1, ..., Xp.

5.17 Multivariate Normal (Gaussian) Distribution

5.17.1 Standard normal

Random vector Z following standard normal distribution is denoted as:

Z ∼ Np(0, Ip)⇔ Z = (z1, .., zp)
⊤, zi

iid∼ N(0, 1).

Density function is:

fZ(x) = (2π)−
p
2 exp{−1

2
||x||2}.

Characteristic function is:
ΨZ(t) = E(eit

⊤Z) = e−
1
2 ||t||

2

= e−
1
2 t

⊤t.

5.17.2 General normal (Gaussian)

For any µ ∈ Rp, and symmetric positive semi-definite matrix Σp×p, a random vector following general normal
distribution can be constructed as

X = µ+Σ
1
2Z ∼ Np(µ,Σ).

The following are some properties of general normal distribution:

1. E(X) = µ,Cov(X,X) = Σ.

2. If rank(Σ) = p (full rank), then Σ is positive definite, and density exists:

fX(x) = fZ(x)J(Z → X) = (2π)−
p
2 exp{−1

2
(x− µ)⊤Σ−1(x− µ)}|det(Σ)|− 1

2 .

3. Characteristic function:

ΨX(x) = E[eit
⊤X ] = exp{it⊤µ− 1

2
t⊤Σt}.



4. For any µ ∈ Rp,Σp×p ≥ 0 being symmetric, there is a unique Np(µ,Σ) distribution.

5. X ∈ µ+ Lcol(Σ) with probability 1, since Lcol(Σ− 1
2 ) = Lcol(Σ).

6. Let Y = rq +Aq×pXp×1. Then Y ∼ Nq(r +Aµ,AΣA⊤).

7. Skewness is always 0. For X = (x1, ..., xp) ∼ Np(µ,Σ),

E((xi − µi)(xj − µj)(xk − µk)) = 0,∀i, j, k.

Kurtosis is
E((x1 − µ1)(x2 − µ2)(x3 − µ3)(x4 − µ4)) = σ12σ34 + σ13σ24 + σ14σ23.

8. Take µ = 0,Σ
1
2 = Γ as a p× p orthogonal matrix, then X = ΓZ ∼ Np(0, Ip).

=⇒ Standard normal is rotationally (spherically) invariant.

9. Let U = Z/||Z||. U is uniformly distributed on the surface of a p-dimensional sphere.

5-4
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6.18 Multivariate Normal Distribution

Properties (cont.)

9. U = Z/∥Z∥ is uniform on a sphere. This is a way to simulate a uniform distribution on a sphere.

10.

(
Xp

Yq

)
∼Np+q

((
µX
µY

)
,

(
ΣXX ΣXY
ΣY X ΣY Y

))
=⇒ X∼Np(µX ,ΣXX)

A marginal distribution of a sub-vector is still multivariate Gaussian.

11. ΣXY = 0 ⇐⇒ X ⊥⊥ Y
Proof: ψ(X,Y )(t, s) = ψX(t)ψY (s)

12. Conditional distribution, Y |X ∼ Nq(µY +ΣY XΣ−1
XX(X − µX),ΣY Y − ΣY XΣ−1

XXΣXY )

Proof: Y = Ŷ + Y ⊥ (projection on L(X))

ψY |X(t) = E[eit
TY |X] = E[eit

T (Ŷ+Y ⊥)|X] = eit
T Ŷ E[eit

TY ⊥ |X]

Cov(Y ⊥,X) = 0 ⇐⇒ Y ⊥ ⊥⊥ X =⇒ eit
T Ŷ E[eit

TY ⊥ |X] = eit
T Ŷ E[eit

TY ⊥
]

13. E[Y |X] is the best linear predictor of Y in terms of X and the best predictor of Y in terms of X.
This holds for any conditional expectation. In the Gaussian case, the best linear prediction is the best
prediction.
Proof: Recall Y = Ŷ + Y ⊥. The best linear predictor is Ŷ = AX such that Var(Y ⊥) is minimized.
The best predictor is Ŷ = f(X) such that Var(Y ⊥) is minimized.

E[Y |X] = E[Ŷ+Y ⊥|X] = f(X)+E[Y ⊥|X] ∧ V ar(Y ⊥) = E[V ar(Y ⊥|X)]+V ar(E[Y ⊥|X]) =⇒ f(X) = E[Y |X]

Repeated Sampling

Now, instead of looking at just one sample, lets look at n independent and identically distributed p-
dimensional random vectors:

X1, ..., Xn ∼i.i.d N(µ,Σ).

We assume Σ is full rank, i.e. it is positive definite. we can collect all the random vectors as columns, and
we get a random matrix:

Xp×n =


...

...
...

X1 X2 . . . Xn

...
...

...

 .

We can find the joint distribution using independence:

f(µ,Σ)(X) =
1

((2π)p|Σ|)n
2
exp(−1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)).
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Let us simplify the exponent of e using sample mean X̄ =
∑n

i=1Xi

n ,

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)

=

n∑
i=1

(Xi − X̄ + X̄ − µ)TΣ−1(Xi − X̄ + X̄ − µ)

=

n∑
i=1

(Xi − X̄)TΣ−1(Xi − X̄) + n(X̄ − µ)TΣ−1(X̄ − µ)

= Tr(

n∑
i=1

(Xi − X̄)TΣ−1(Xi − X̄)) + n(X̄ − µ)TΣ−1(X̄ − µ)

= Tr(Σ−1
n∑
i=1

(Xi − X̄)(Xi − X̄)T ) + n(X̄ − µ)TΣ−1(X̄ − µ)

= Tr(Σ−1S) + n(X̄ − µ)TΣ−1(X̄ − µ),

where S =
∑n
i=1(Xi−X̄)(Xi−X̄)T is the sample covariance matrix. Thus we can write the joint distribution

in terms of the sample mean X̄ and sample covariance matrix S,

f(µ,Σ)(X) =
1

((2π)p|Σ|)n
2
exp(Tr(Σ−1S) + n(X̄ − µ)TΣ−1(X̄ − µ)).

(X̄, S) is a sufficient statistic (complete sufficient).
Multivariate Gaussian distribution is a special case of the exponential family, whose distribution is of the
form

f(x̃, θ) = exp(

k∑
i=1

ηi(θ)Ti(x̃)− ψ(θ))h(x̃)

where x̃ can be either a vector or a matrix, and {Ti(k)} are complete sufficient.

6.19 Matrix Manipulation

Vectorization

A =


...

...
...

a1 a2 . . . ap
...

...
...


n×p

=⇒ vec(A) =


a1
a2
...
ap


np×1

With this definition, we can define other things like matrix norm, inner product, and orthogonality
between matrices.

∥A∥2 = ∥vec(A)∥2 = tr(ATA)

⟨A,B⟩ = ⟨vec(A), vec(B)⟩ = tr(ATB)

This leads us to a natural way to manipulate random matrix Xpxn, where Xi
iid∼ Np(µ,Σ) for all i ∈

{1, ..., n}.
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Xp×n =


...

...
...

X1 X2 . . . Xn

...
...

...

 =⇒ vec(X) =


X1

X2

...
Xn


pn×1

vec(X) ∼ Npn(µ∗,Σ∗) such that:

µ∗ =


µ
µ
...
µ


(pn)×1

Σ∗ =



Σ Cov(X1, X2) = 0 . . . Cov(X1, X3) = 0 Cov(X1, Xn) = 0

Cov(X2, X1) = 0 Σ
. . . Cov(X2, X3) = 0 Cov(X2, Xn) = 0

...
. . .

. . .
. . .

...

Cov(Xn−1, X1) = 0 Cov(Xn−1, X2) = 0
. . . Σ Cov(Xn−1, Xn) = 0

Cov(Xn, X1) = 0 Cov(Xn, X2) = 0 . . . Cov(Xn, Xn−1) = 0 Σ


= diag(Σ,Σ, ...,Σ) = In ⊗ Σ

Kronecker Product

The definition of a Kronecker product is as follows:

Apxq ⊗Brxs =


a11B a12B . . . a1qB
a21B a22B . . . a2qB
...

...
. . .

...
ap1B ap2B . . . apqB


(pr)×(qs)

The Kronecker product has the following properties:

1. (A⊗B)⊗ C = A⊗ (B ⊗ C)

2. (A⊗B)T = (AT ⊗BT )

3. (A⊗B)−1 = A−1 ⊗B−1 if A, B invertible

4. (A⊗B)(C ⊗D) = (AC ⊗BD)

5. tr(A⊗B) = tr(A)tr(B)

6. vec(AXB) = (BT ⊗A)vec(X)

Returning to the repeated sampling setup, we see when

X1, ..., Xn ∼i.i.d N(µ,Σ),

and

Xp×n =


...

...
...

X1 X2 . . . Xn

...
...

...

 ;

and µ · 1T = (µ µ · · ·µ), we have
Xp×n ∼ Np×n(µ · 1T , In ⊗ Σ).



Generalization of (i.i.d.) Normal Data Matrix

We now consider

Xp×n =


...

...
...

X1 X2 . . . Xn

...
...

...

 ;

where X1, ..., Xn ∼ N(µ,Σ), i.e. they are identically distributed but not independent. Under the indepen-
dence assumption, we have

Cov(Xi1j1 ,Xi2j2) = Σi1i2Ij1j2 .

In the dependent case we will have

Cov(Xi1j1 ,Xi2j2) = Σi1i2∆j1j2 ,

for some symmetric positive definite matrix ∆.

• Cov(Xi1,j1 ,Xi2,j2) = Σi1,i2△j1,j2 for Σ,△ symmetric and Σ > 0,△ > 0.

• Cov(X•,j) = Cov((X1,j , · · · ,Xp,j)T ) = Σ · △j,j

• Cov(Xi,•) = Cov((Xi,1, · · · ,Xi,n)T ) = Σi,i · △.

6-4
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7.20 Repeated Sampling (continued)

Now we consider X = (X1, X2, · · · , Xn) with X1, X2, · · · , Xn are identically distributed but not independent.
E.g.: stationary time series X1, X2, · · · , Xt with each vector marginally following same distribution, vector
Auto Regressive (VAR) Model.

Then assume Xp×n ∼ Np×n(µ,△⊗ Σ), where µi,j = E(Xi,j) is a matrix, Cov(vec(X)) = △⊗ Σ

7.20.1 Properties of Generalised Gaussian Matrix

• XT ∼ Nn×p(µT ,Σ⊗△).

• If Xp×n ∼ Np×n(µ,△⊗ Σ), then Aq×pXp×nBn×m ∼ N(AµB, (BT△B)⊗ (AΣAT )).

Proof: vec(AXB) = (BT ⊗A) · vec(X), then

Cov(vec(AXB)) = Cov((BT ⊗A) · vec(X))
= (BT ⊗A)Cov(vec(X))(BT ⊗A)T

= (BT ⊗A)(△⊗ Σ)(B ⊗AT )
= (BT△B)⊗ (AΣAT ).

(7.1)

to remember intuition, think special case with n = p = 1.

• Suppose Σ,△ have spectral decomposition

Σ = Γ1D1Γ
T
1 ,△ = Γ2D2Γ

T
2 (7.2)

with rank(Σ) = k1, rank(△) = k2. Then we can take

X = µ+ Γ1D
1/2
1 ZD1/2

2 ΓT2 (7.3)

then Zk1×k2 ∼ N(0, Ik2 ⊗ Ik1)(iid standard normal in all entries of matrix), which is equivalent to
X ∼ Np×n(µ,△⊗ Σ).

Consider Xp×n ∼ Np×n(0, In⊗Σ) ⇐⇒ X = (X1, X2, · · · , Xn) with X1, X2, · · · , Xn Np(0,Σ) follows iid.

X =


...
X1

...

...
X2

...

· · ·

...
Xn

...


Let V = XTp×n = (v1, v2, · · · , vp) and we have vi ∼ Nn(0, σiiIn).

V = XT =


...
v1
...

...
v2
...

· · ·

...
vp
...





X =


· · · vT1 · · ·
· · · vT2 · · ·

...
· · · vTp · · ·


where vTp can be taken as individual features like height, weight, age, etc.

Rotational in-variance of mean 0, Normal data matrix. In is a full orthogonal matrix Moreover, let Γn×n be
a full orthogonal basis, then

Γvi ∼ Nn(0, σiiΓInΓT ) = Nn(0, σiiIn) ∼ vi (7.4)

and
XΓT = (ΓXT )T = (ΓV )T ∼ N(0,ΓΓT ⊗ Σ) = N(0, In ⊗ Σ) (7.5)

7.21 Spherical Symmetry and t-test

Recall the univariate t-test -

X1, X2, · · · , Xn ∼ N(µ, σ2) follows iid, H0 : µ = 0;H1 : µ ̸= 0 (7.6)

t =

√
nX√∑

i(Xi −X)2/(n− 1)
(7.7)

In geometry, 1n×1 = (1, 1, · · · , 1)T . Using projection onto 1n×1.
We have X̂ = P1X = (X,X, · · · , X)n×1.
Moreover, X⊥ = X − X̂ = (X1 − X̂,X2 − X̂, · · · , Xn − X̂) = (I − P1)X, and

t = sgn(X̂) ·
√
n− 1 ·

∥∥∥X̂∥∥∥
∥X⊥∥

(7.8)

where
∥∥∥X̂∥∥∥ =

∥∥(X,X, · · · , X)
∥∥ =

√
n(X

2
) =
√
n|X|

P1 (projection matrix onto 1T ) = 1(1T 1)−11T = 1
n1 · 1

T

7-2
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Figure 7.7: Geometric intuition behind t-test
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8.22 Centering matrix

X =


...
X1

...

...
X2

...

· · ·

...
Xn

...



X̄ =
1

n

n∑
i=1

Xi, X̄ =
1

n
XIn, In =


I
I
I
...
I


n×1

Y =
(
X1 − X̄,X2 − X̄, · · · , Xn − X̄

)
=X−

(
X̄, X̄, X̄, · · · , X̄

)
= X− X̄ IT

n
= X− 1

n
(XIn) ITn

=X
(
In −

1

n
InI

T
n

)
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P̂I =
1

n
InI

T
n
: projection matrix onto L⊥

col (In)

=In
(
IT
n
In
)−1

IT
n

Hn = In −
1

n
InI

T
n
= P̂⊥

I
: projection matrix onto L⊥

col (In)

Jn = In I
T
n
=


1
1
1
1

1
1
1
1

1
1
1
1

· · ·
· · ·
· · ·
· · ·

1
1
1
1


Therefore ,

Y = XHn

Xp×n ∼ N
(
µ IT

n
, In ⊗

∑)
µ IT

n
=

(
1
µ
1
,
1
µ
1
, · · ·

1
µ
1

)
Yp×n ∼ XHn ⇕ xi

iid∼ Np
(
µ,
∑)

8.23 Properties of Yp×n

8.23.1 Distribution

Yp×n ∼ Np×n
(
0, Hn ⊗

∑)
HT

n

↕
InHn = Hn

X ∼ Np
(
µ,

1

n

∑)
1

n2
(
ITn InIn

) ↕
⊗
∑

1

n

↕∑
8.23.2 Y

∐
X only need uncorrelated(

Y,X
)
=X

(
Hn,

1

n
In

)
∼N

[
,

(
Hn,

1

n
In

)T
In

(
Hn,

1

n
In

)
⊗
∑]

Y
∐

X ⇔Hn ·
1

n
In = 0

In
↕
· 1
n
InI

T
n

8.23.3 Y Y T is independent of X

S =

n∑
i=1

(
Xi −X

) (
Xi −X

)T
= Y Y T

∐
X



8.23.4 Distribution of Y Y T

In/
√
n vector, wren of I
∃I1,n×(n−1) is orthogonal basic of L⊥

ol
(In)

Then Γ = (Γ1, In/
√
n ) is full orthogonal basis

Hn projection matrix onto L⊥
ol
(In) = Γ1Γ

T
1

Z = XΓ1 ∼ Np×(n−1) (0, In−1 ⊗
∑

)
S = Y Y T = Y HnY

T = Y Γ1Γ
T
1
Y T = ZZT

ZZT = XΓ1Γ
TXT = XHn

(
HT
n XT

)
= Y Y T

⇒ Y Y T has the same distribution of ZZT where Z ∼ Npx(n−1) (0, In−1 ⊗
∑

)

⇔ Y Y T has the same distribution of
n−1∑
i=1

ZiZ
T
i where Z1, Z2, · · ·Zn−1

idd∼ Np (
∑

)

8.24 Wishart distribution

Consider Xp×n ∼ N (0, In ⊗
∑

)
Def. For Xp×n ∼ N (0, In ⊗

∑
) ,S = XXT is said to have wishart distribution with scale matrix

∑
,

and degree of freedom n
S ∼Wp (

∑
, n)

Pd.f : fS (S) = fX (X) J (X→ S)
*Jacobian to Triangular coordinate ⇒ Barlett decomposition
J (X→ S) = J (X→ T ) J (T → S)

T : (∇)Vn×p = XT , V =Wn×pTp×p (QR decomp)

S = XXT = V TV = TTT

Then J (X→ S) = J (X→ T ) J (J → S)

 idea of proof

Lemma 1 The integral Jacobian of Xp×n → Tp×p

J (X→ T ) = C1 ·
p∏
i=1

tn−iii

where C1 = 2pπ
np
2 − p2

4 + p
4 /

p∏
j=1

Γ
(
n−j+1

2

)
Corollary : fT (t) = fX (x) · J (X→ T )

Hint: Xp×n ∼ Np×n (0, In ⊗ Ip) ,x : j
iid∼ N (0, 1)

8-3
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9.25 Integral Jacobian

Xp×n ∼ N(0, In ⊗ Σ), S = XXT , V = XT = (v1, v2, ..., vp)

Definition: S Wp(Σ,Λ, V =WT (QR decomposition). S = TTT

Lemma 1: Integral Jacobian of Xp×n −→ Tp×p is:

J(X −→ T ) = c1

p∏
i=1

tn−iii , where c1 = 2p
π

np
2 − p2

4 + p
4∏p

j=1 Γ(
n−j+1

2 )
(9.9)

Proof : Idea Xp×n ∼ N(0, In ⊗ Ip). Then if I find out the distribution of T , where XT = U = WT .

Then the J(X −→ T ) = fX(x)
fT (t)

, where fX(x) = (2π)−
np
2 exp(− 1

2

∑
ij x

2
ij).∑

ij

x2ij = tr(XXT )

= tr(TTWTWT )

= tr(TTT )

=
∑
ij

t2ij

Thus, we can write:

fX(x) = (2π)−
np
2 exp(−1

2

∑
ij

t2ij)

Next find out distribution of tij
XT = V = (v1, v2, ..., vp) =WT

vi =


xi1
xi2
...
xin

 , each N(0, 1) iid

By Gram-Schmidt orthogonalization:

v1 = t11w1

v2 = t12w1 + t22w2

v3 = t13w1 + t23w2 + t33w3

...

vp = t1pw1 + t2pw2 + · · ·+ tppwp
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where t11 = ||v1||, t12 =Projection of V2 to W1,. . . , etc.
Construction of W and T :

t211 = ||v1||2 ∼ χ2
n, w1 =

v1
||v1||

t12 =< v2, w1 >∼ N(0, 1), w2 = Projection of V2 onto L⊥(V1) =
v⊥2
||v⊥2 ||

t222 = ||v⊥2 ||2 ∼ χ2
n−1,

t13 =< v3, w1 >∼ N(0, 1), w3 = Projection of V3 onto L⊥(V1, V2) =
v⊥3
||v⊥3 ||

t23 =< v3, w2 >∼ N(0, 1),

t233 = ||v⊥3 ||2 ∼ χ2
n−2,

...

tij ∼ N(0, 1)

tii ∼ χn−i+1

t2ii ∼ χ2
n−i+1

We have that:

t222 = ||v2||2 = ||P⊥
2 V2||2 = V T2 P

⊥
2 V2 = ||(Γ⊥

2 )
TV2||22

P⊥
2 = (Γ⊥

2 )(Γ
⊥)T , Γ⊥

2 = is the orthogonal basis for L⊥
col(V1, V2)

(Γ⊥
2 )

TV2 ∼ Nn−1(0, In−1).

As,

t12 =< W1, V2 >=WT
1 V2

V2 ∼ N(0, In)

WT
1 V2 ∼ N(0,WT

1 W2) = N(0, 1)

Similarly, t23 =< W2, V3 >=WT
2 V3

V3 ∼ N(0, In)

WT
2 V3 ∼ N(0,WT

2 W3) = N(0, 1)

cov(WT
2 V3,W

T
1 V2) = E(WT

2 InW1) = 0

So, all of tij ’s are mutually independent, i < j, tij is inner product onto orthogonal space =⇒ correlation
zero, =⇒ independence. tii is the norm (HW: ||z|| ⊥ z

||z|| )

fT (t) =

p∏
i=1

tn−iii e−
1
2 t

2
ii

2
n−i+1

2 Γ(n−i+2
2 )

∏
j>i

1√
2π
e−

t2ij
2

J(X −→ T ) =
fT (t)

fX(x)

T =


χn N(0, 1) N(0, 1) . . . N(0, 1)

χn−1 N(0, 1) . . . N(0, 1)
...

. . . χn−p+1


p×p



Chapter 9: Properties of Wishart Distribution 9-3

9.26 Bartlett Decomposition for General Wishart Matrix

S ∼Wp(Σ, n)

Xp×n ∼ Np×n(0, In ⊗ Σ) s.t. S = XXT

Xp×n = Σ
1
2Z Z ∼ N(0, In × Ip)

S = Σ
1
2ZZT (Σ

1
2 )T

If we use Σ1/2 = LT Cholesky Decomposition

S = (LT )Σ
1/2

(LT )T
T

(UT )T (UT )(Σ
1/2)T

Lemma 9.10 J(T → S)

Let T be upper triangular, S = TTT . Then we have an injective mapping

J(T → S) = (2p
n∏
i=1

tp−i+1
ii )−1

Intuition: Degrees of Freedom T, S : p(p+1)
2 Proof: HW3

9.26.1 Hsu’s Lemma

J(X → S) = J(X → T )J(T → S)

=
π

np
2 − p2

4 + p
4∏p

i=1 Γ(
n−i+1

2 )
|S| 12 (n−p+1)

Theorem 9.11 If Σ > 0, then S > 0 w.p. 1 and has density

fS(s) = C2|Σ|−
n
2 exp

{
− 1

2
tr(Σ−1S)

}
|S|

n−p−1
2

where C2 =

[
2

np
2 π

p2

4
− p

4

p∏
i=1

Γ(
n− i+ 1

2
)

]−1

9.26.2 Properties of Wishart Distribution

(1) If S ∼Wp(Σ, n), let S̃qq = Aq×pSp×pA
T
p×q. Then:

S̃ ∼Wq(AΣA
T , n)

Proof:

S = XXT

X ∼ N(0, In ⊗ Σ)

AX ∼ N(0, In ⊗AΣAT )
⇒ ASAT = AXXTAT = (AX)(AX)T ∼Wq(AΣA

T , n)
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(2) Let

S1 ∼Wp(Σ, n1)

S2 ∼Wp(Σ, n2)

S1 ⊥ S2 ⇒ S1 + S2 ∼Wp(n1 + n2)

Proof:

S1 = X1X
T
1 where X1 ∼ N(0, In1

⊗ Σ)

S2 = X2X
T
2 where X2 ∼ N(0, In2 ⊗ Σ)

S1 ⊥ S2 ⇐⇒ X1 ⊥ X2

∵ Block matrix
[
X1 X2

]
∼ N(0, In1+n2 ⊗ Σ)

∴ S1 + S2 =
[
X1 X2

] [X1

X2

]
∼Wp(Σ, n1 + n2)

(3) Let
Xp×n ∼ N(µp×n, In ⊗ Σ)

Where Γn×m is an orthogonal matrix in L⊥
row(µ) i.e. µΓ = 0. Then:

Yp×m = XΓ ∼ Np×m( µΓ︸︷︷︸
0

,ΓTΓ︸︷︷︸
Im

⊗Σ)

S = Y Y T ∼Wp(Σ,m)

(4) Let
X ∼ N(µ, In ⊗ Σ)

Where P is a projection matrix into m dimensional space that is a subspace of L⊥
row(µ) i.e. µP = 0

Then
Y := XP ⇒ Y Y T ∼Wp(Σ,m)

Proof: Let Γ be an orthogonal basis Γn×m

P = ΓΓT

Y Y T = XPPXT

= XPXT

= XΓΓTXT

= (XΓ)(XΓ)T

where XΓ ∼ N(0, Im ⊗ Σ)

(5) Application to Centering
Consider the projection matrix onto L⊥

col(1n)

Hn = In −
1

n
1n1

T
n

and the matrix

X ∼ N(µ1Tn , In ⊗ Σ) ⇐⇒ Xi
iid∼ Np(µ,Σ), i = 1, 2, . . . , n



Then

Y = XHn = (X1 − X̄, . . . , Xn − X̄)

S = Y Y T =

n∑
i=1

(Xi − X̄)(Xi − X̄)T ∼Wp(Σ, n− 1)

9.27 Wishart distribution

Definition 9.12 Suppose X is a p×n matrix,each column of which is independently drawn from a p-variate
normal distribution with zero mean:

S = XXT =
∑n
i=1XiX

T
i known as the scatter matrix.

One indicates that S has that probability distribution by writing:
S ∼Wp(V, n)
The positive integer n is the number of degrees of freedom.

Theorem 9.13 Correlation coefficient: ρij =
σij√
σiiσjj

Sample Correlation coefficient: Rij =
Sij√
SiiSjj

Dp×p = diag(
√
Sii), i = 1, . . . , p

So, R = D−1SD−1

df : R : p(p−1)
2 D : p S : p(p+1)

2
Therefore, S → (D,R) is an one-to-one mapping.

Lemma 9.14 J(S → (D,R)) = 2p|D|p proof: S = DRD then calculate the derivative Sij = diRijdj

Theorem 9.15 The joint distribution of (D,R) is fS(s) · 2p|D|p

Corollary 9.16 If S ∼Wp(Σ, n− 1) then D is orthogonal to R with fR(R) = C4 · |R|
n−p−1

2 and Dii
i.i.d∼ χn

Proof: fS(s) · 2p|D|p = C3 · e−
1
2 tr(S)|S|

n−p−1
2 · 2p

Because we can have this separate expression, D is orthogonal to R

9-5
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10.28 Hotelling’s T 2 statistics

Definition 10.17 Univariate t-test: X1, X2, . . . , Xn
i.i.d∼ N(µ, σ2). H0 : µ = 0, H1 : µ ̸= 0

t =

√
nX̄√∑n

i=1(Xi − X̄)2/n− 1
= sgn(X̄)

||X̂||
||X⊥||

√
n− 1

Definition 10.18 Hotelling’s T 2 test: X1, X2, . . . , Xn
i.i.d∼ Np(µ,Σ). H0 : µ = 0, H1 : µ ̸= 0

S =

n∑
i=1

(Xi − X̄)(Xi − X̄)T = XXT − nX̄X̄T

The T 2 test statistics:

T 2 = X̄T (
S

n(n− 1)
)−1X̄

The Hotelling’s T 2 statistics if a quadratic from w.r.t. shape S−1.

10.28.1 Geometric interpretation

Claim 10.19 look for the ”smallest angle” between 1n and any linear combination of V1, V2, . . . , Vp, where
Vn×p = XT = (V1, V2, . . . , Vp). Looking at the angle between Lrow(X) & 1n. Let’s all this angle A.

Proof:
Projection matrix onto Lrow(X) is XT (XXT )−1X.
the project of 1n on Lrow(X) is u = XT (XXT )−1X1n.

cos(A)||1n||||u|| =< 1n, u >

cos2(A) =
< 1n, u >

2

< 1n, 1n >< u, u >
=

1TnX
T (XXT )−1X1n

n
= nX̄T (XXT )−1X̄ = nX̄T (S + nX̄X̄T )−1X̄

Woodbury’s Formula:

cos2(A) = nX̄T [S−1 − S−1X̄X̄TS−1

1/n+ X̄S−1X̄
]X̄ =

nX̄TS−1X̄

1 + nX̄TS−1X̄

Therefore,

cot2A =
cos2A

1− cos2A
= nX̄TS−1X̄ =

T 2

n− 1

10-1
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10.28.2 Connection with linear regression

1n
regress
= β1V1 + β2V2 + · · · + βpVp H0 : µ = 0 ⇐⇒ H0 : β1 = β2 = · · · = βp = 0, H1:at least 1 of β are

not equal to 0
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11.29 Null Distribution of T 2

If H0 is true, Under H0: X ∼ Np×n(0, In ⊗ Σ), assume the angle between 1n and Lrow(X) is A.
Change the frame as if we are sitting down on a fixed p-dimensional hyperplane, where the direction of 1n is
“uniformly distributed” on all possible directions. Therefore, as long as the projection is concerned, we can
take the plane to be L(e1, e2, ..., ep) where ei = (0, 0, ..., 0, 1(i-th), 0, ..., 0) and replace 1n by (y1, y2, ..., yn)
where yi ∼ N(0, 1), iid. Then

ŷ = (y1, y2, ..., yp, 0, ..., 0)

y⊥ = (0, ..., 0, yp+1, ..., yn)

cot2A =
||ŷ||2

||y⊥||2
=

∑p
i=1 y

2
i∑n

i=p+1 y
2
i

∼ p

n− p
Fp,n−p

11.29.1 Linear Regression Interpretation

H0: µ = 0 ⇔ H0: β = 0 in regression of 1n ∼ XT ⇔ F-test.

X ∼ Np×n(µ1Tn , In ⊗ Σ)

S =

n∑
i=1

(Xi − X̄)(Xi − X̄)T = XXT − nX̄X̄T

X̄ ⊥⊥ S

test H0 : µ = 0

T 2 = X̄T { S

n(n− 1)
}−1X̄

Theorem 11.20 Under the null hypothesis, the hotelling T 2 statistics has (n−1)p
n−p Fp,n−p distribution.

Ex: Let ap∗1 be a fixed non-zero vector, y = aTx = (y1, ..., yn), yi ∼ N(aTµ, aTΣa), iid. Let t2(a) be the
sample t-test statistics

t2(a) =
nȳ2∑
(yi−ȳ)2
n−1

Show that Hotelling T 2 statistics. T 2 = max
a

t2(a) (Homework).

Lemma 11.21 Suppose S ∼ Wp(Σ,m) m > p, then we have

1) aTSa
aTΣa

∼ χ2
m where a is a p-vector
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2) aTΣ−1a
aTS−1a

∼ χ2
m−p+1

Proof: 1):

S = XXT , X ∼ Np∗m(0, Im ⊗ Σ)

then aTX ∼ N(0, Im ⊗ aTΣ)
then aTSa = (aTX)(aTX)T

The rest is trivial.
2): We can simply take Σ = Ip, WLOG, otherwise we can take S̃ = Σ− 1

2S(Σ− 1
2 )T , b = Σ− 1

2 a, then
aTΣ−1a
aTS−1a

= bT b
bT S̃−1b

where S̃ ∼Wp(Ip,m). Also, we can assume ∥b∥ = 1.

So, we only need to show for S ∼ Wp(Ip,m) u unit length vector 1
uTS−1u

∼ χ2
m−p+1. Let Γp∗p = (Γ1, u)

be a full orthogonal matrix.

R = ΓTSΓ ∼Wp(Ip,m)

R−1 = ΓTS−1Γ ∼
[

Γ1

uT

]
S−1[Γ1 u]

Then uTS−1u = (R−1)pp, R =

[
R11 R12

R21 R22

]
. Therefore, uTS−1u = (R22 −R21R

−1
11 R12)

−1 ∼ 1
χ2
m−p+1

Proof:[Proof of Theorem 11.20] Now we prove under H0: T
2 ∼ (n− 1) p

n−pFp,n−p.

T 2 = X̄T

[
S

n(n− 1)

]−1

X̄

= (n− 1)
X̄T (Σn )

−1X̄

X̄T (Σn )
−1X̄/X̄T (Sn )

−1X̄

X̄ ∼ Np(0,
Σ

n
)

X̄ ⊥⊥ S
S

n
∼Wp(

Σ

n
, n− 1)

Conditioning on X̄, use 2), we have
X̄T (Σ

n )−1X̄

X̄T (S
n )−1X̄

∼ χ2
n−p which implies

X̄T (Σ
n )−1X̄

X̄T (S
n )−1X̄

is independent of X̄.

⇒ X̄T (Σn )
−1X̄ ∼ χ2

p. Using 1) and also independent to
X̄T (Σ

n )−1X̄

X̄T (S
n )−1X̄

. ⇒ T 2 ∼ (n− 1) p
n−pFp,n−p

11.30 Non Null Distribution of T 2

What happens to T 2 if µ˜ ̸= 0˜?
Lemma 11.22 ( Linear Invariance of T 2) Xp∗n ∼ Np∗n(µ1n, In ⊗ Σ), X̃ = Ap∗pX when Ap∗p is non-

singular, similarly we can get
¯̃
X = 1

n

∑n
i=1 X̃i, S̃ =

∑n
i=1(X̃i −

¯̃
X)(X̃i −

¯̃
X)T and T̃ 2 =

¯̃
X
[

S̃
n(n−1)

]−1 ¯̃
X.

Claim 11.23 T 2 = T̃ 2



Proof:

¯̃
X = AX̄

S̃ = ASAT

T̃ 2 =
¯̃
X

[
S̃

n(n− 1)

]−1

¯̃
X = T 2

This means we can even assume Σ = Ip in our proof for the distribution of T 2.

Theorem 11.24 (Hotelling) If Xp∗n ∼ N(µ1Tn , In ⊗ Σ), Σ > 0, then T 2 = X̄
[

S̃
n(n−1)

]−1

X̄ has distribu-

tion T 2 ∼ (n − 1) p
n−pFp,n−p(nµ

TΣ−1µ) where Fn1,n2(δ
2) is the non-central F distribution. Fn1,n2(δ

2) =
χ2
n1

(δ2)/n1

χ2
n2
/n2

.

11-3
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12.31 Review

Theorem 12.25 (Hotelling’s Theorem) If Xp×n ∼ N(µ1Tn , In ⊗ Σ), then T 2 = X̄T ( S
n(n−1) )

−1X̄ has

distribution:

T 2 ∼ (n− 1) p
n−pFp,n−p(nµ

TΣ−1µ)

where Fn1,n2
(δ2) is the non-normal F - distribution:

Fn1,n2(δ
2) =

χ2
n1

(δ2)/n1

χ2
n2
/n2

Proof: Take A = Σ−1, so X̃ = Σ− 1
2X, µ̃ = Σ− 1

2µ. Then:

T 2 = T̃ 2 = n ¯̃XT ¯̃X

n ¯̃XT ¯̃X/ ¯̃XT (S
n )−1 ¯̃X

· (n− 1)

Denominator ∼ χ2
n−p

Nominator ∼ Np(µ̂, Ip/n) = 1√
n
Np(
√
nµ̃, Ip)

By definition of non-central Chi-square distribution with non-central parameter:

µ̃2
1 + µ̃2

2 + ...+ µ̃2
p = µ̃T µ̃ = µTΣ−1µ

More generally, y ∼ Np(µ, cΣ) and is independent from S ∼Wp(Σ, µ), then:

yT (∆Sm )−1y ∼ mp
m−p+1Fp,m−p+1(δ

2)

δ2 = µTΣ−1µ/c

12.32 Two Sample T-Test

1. Assume X1, X2, ..., Xn1 ∼ N(µ1, σ
2), Y1, ..., Yn1 ∼ N(µ2, σ

2), and test the hypothesis:

H0 : µ1 = µ2 H1 : µ1 ̸= µ2

T-statistics:



Chapter 12: Two-sample T Test 12-2

t = ȳ−x̄√
( 1
n1

+ 1
n2

)
S1+S2
n−2

S1 =
∑n1

j=1(Xj − X̄)2

S2 =
∑n2

j=1(Yj − Ȳ )2

2. Geometry of Two-Sample T-test:

d = (− 1
n1

(1)
,− 1

n1

(2)
, ...,− 1

n1

(n1), 1
n2

(1)
, ..., 1

n2

(n2))

Z = (X1, X2, ..., Xn1
, Y1, Y2, ..., Yn2

)

Ȳ − X̄ = dTZ

3. Linear regression interpretation:
Regress variable Z onto vectors (1, 1, ..., 1) and vector d:

Z ∼ α1n + βd

µ1 = µ2 ⇔ β = 0

12.33 Two Sample T-Test in Multivariate Situations

1. Assume X1, X2, ..., Xn1
∼ N(µ1,Σ), Y1, Y2, ..., Yn1

∼ N(µ2,Σ), and test the hypothesis:

H0 : µ1 = µ2 H1 : µ1 ̸= µ2

T 2 = (ȳ − x̄)T (( 1
n1

+ 1
n2

)S1+S2

n−2 )−1(ȳ − x̄)

S1 =
∑n1

j=1(Xj − X̄)(Xj − X̄)T

S2 =
∑n2

j=1(Yj − Ȳ )(Yj − Ȳ )T

2. Geometric interpretation:

Zp×n = (X,Y ) = (ZT1 , Z
T
2 , ..., Z

T
p )

3. Linear regression interpretation:

d = (− 1
n1

(1)
,− 1

n1

(2)
, ...,− 1

n1

(n1), 1
n2

(1)
, ..., 1

n2

(n2))

d ∼ β1Z⊥
1 + β2Z

⊥
2 + ...+ βnZ

⊥
p

H0 : µ1 = µ2 ⇔ β1 = β2 = ... = βn = 0

4. Null distribution of T 2:
Theorem: Under null hypothesis,

T 2 ∼ (n− 2) p
n−p−1Fp,n−p−1



Under non-null hypothesis,

T 2 ∼ (n− 2) p
n−p−1Fp,n−p−1(δ

2)

δ2 = n1n2

n (µ2 − µ1)
TΣ−1(µ2 − µ1)

12.34 Mahalanobis Distance

If Xp×1 ∼ (µX ,Σ), which does not have to be Gaussian, and Yp×1 ∼ (µY ,Σ) (share the same Σ). Then

∆ = [(µy − µX)TΣ−1(µY − µX)]
1
2

∆ is called Mahalanobis Distance between X and Y. Properties:
1. Linearly invariant: Ap×p is non-singular, µ̃X = AX +B, µ̃Y = AY +B, then ∆̃ = ∆.
2. Connection with K-L divengence: KL(Np(µx,Σ), Np(µY ,Σ)) = 1/2∆;
3. Decomposition of ∆2: Suppose Xp×1 = (X1(p1×1), X2(p2×1)), then:

µ⊥
2 = µ2 − Σ21Σ

−1
11 µ1

Σ⊥
22 = Σ22 − Σ21Σ

−1
11 Σ12

∆2(X) = µT1 Σ11µ1 + (µ⊥
2 )

T (Σ⊥
22)

−1µ⊥
2

12-3
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13.35 Fundamental Lemma for PCA

Quadratic form: ||g||2A = gTAg, Ap×p ≥ 0, A is symmetric, rank(A) = k. Then

A = Γ1ΛΓ
T
1 ,

where Γ1 = (γ1, ..., γk),Λ = diag{λ1, ..., λk}.
Enrich the orthogonal basis: Γ = (Γ1, γk+1, . . . , γp) and Λ = diag(λ1, . . . , λk, 0, . . . , 0), Thus,

A =

p∑
i=1

λiγiγ
T
i

∀g ∈ Rp, ||g||2A = gTAg =
∑p
i=1 λig

T γiγ
T
i g =

∑p
i=1 λih

2
i , where hi = γTi g = gT γi =< g, γi > is the

coordinate under basis γi, . . . , γp.

Claim 13.26 Assume rank(A) = p and i.e. λi > 0 for i = 1, 2, . . . , p

Γ := [γ1, γ2, . . . , γp]

Λ = diag(λ1, λ2, . . . , λp)

A = ΓΛΓT

Then

1. g∗ := γ1 maximizes

max
g

{
∥g∥2A : ∥g∥ = 1

}
with objective value ∥g∗∥2A = λ1

2. g∗ := γ2 maximizes

max
g

{
∥g∥2A : ∥g∥ = 1, < g, γ1 >= 0

}
with objective value ∥g∗∥2A = λ2
...

k. g∗ := γk maximizes

max
g

{
∥g∥2A : ∥g∥ = 1, < g, γ1 >= 0, < g, γ2 >= 0, . . . , < g, γk−1 >= 0

}
with objective value ∥g∗∥2A = λk
...
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p. g∗ := γp minimizes ∥g∥2A on ∥g∥2 = 1 with objective value ∥g∗∥2A = λp

Note: If ∥g∥2 = 1 then what is the range of ∥g∥2A

R(g) =
∥g∥2A
∥g∥2

Proof: We see that

h := ΓT g =


γT1 g
γT2 g
...

γTp g

 =


h1
h2
...
hp


∥g∥2A := gTAg = gTΓΛΓT g

=

p∑
i=1

λih
2
i

∴ ∥h∥22 = hTh = gTΓΓT g = gT g = 1

So given ∥h∥22 = 1, what is the range of ∥g∥2A =
∑p
i=1 λih

2
i ?

1. h = [1; 0; 0; . . . ; 0] maximizes
∑p
i=1 λih

2
i to be λ1

2. gT γ1 = 0 ⇐⇒ h1 = 0 ⇐⇒ h = [0;□;□; . . . ;□]
Given h1 = 0, h = [0; 1; 0; . . . ; 0] maximizes

∑p
i=1 λih

2
i to be λ2

...

k. gT γ1 = 0, gT γ2 = 0, . . . , gT γk−1 = 0 ⇐⇒ h1 = h2 = · · · = hk−1 = 0
Given h1 = h2 = · · · = hk−1 = 0, h = [0; 0; 0; . . . ; 1︸︷︷︸

k-th

; . . . ; 0] maximizes
∑p
i=1 λih

2
i to be λk

...

p. h = [0; 0; . . . ; 0; 1] minimizes
∑p
i=1 λih

2
i to be λp

13.35.1 Simultaneous Orthogonality

Since

gTAγi = gT (

p∑
j=1

λjγjγ
T
j )γi = λi(g

T γi)

Then we have
gTAγi = 0 ⇐⇒ gT γi = 0,

which means
< g, γi >= 0 ⇐⇒ < g, γi >A= 0.

Thus, gT γi = 0 can be replaced by < g, γi >A= 0



13.36 Principal Components in Sample Space

Given sample

Xp×n = [X⃗1, X⃗2, . . . , X⃗n]

=


V⃗ T1
V⃗ T2
...

V⃗ Tp


Assume E[X⃗i] = 0, S = XXT , with spectral decomposition

S = ΓDΓT

D = diag(d1, . . . , dp), d1 ≥ d2 ≥ . . . ≥ dp > 0

Γ = [γ1, γ2, . . . , γp]

Definition 13.27

1. Y⃗j = γTX is known as the j-th principal component of X

2. γj is known as the j-th principal factor

3. Let Γ(j) := [γ1, γ2, . . . , γj ]
Then

Y⃗ (j) = [Γ(j)]TX =

γ
T
1 X
...

γTj X

 =

Y1...
Yj


is called the j-th principal component representation

4. The i-th component of the vector Y⃗j is called the loading of X⃗i on γj

(Y⃗j)i = γTj X⃗i

Theorem 13.28 Among all p-dimensional unit vectors g⃗, the first principal factor γ1 maximizes

n∑
i=1

(g⃗T X⃗i)
2 = ∥g⃗TX∥2 (Sample Variance)

where the maximum is d1
Then among all unit vectors g⃗ satisfying g⃗T γ1 = 0 or equivalently

g⃗TSg⃗ = 0 ⇐⇒ g⃗TXXT g⃗ = 0 ⇐⇒ Corr(g⃗TX, γT1 X) = 0

The second principal factor γ2 maximizes ∥gTX∥22︸ ︷︷ ︸
sample variance

and the maximum is d2

...

13-3
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14.37 Basic notions

Y (j) = Γ(j)TX =


y1
y2
...
yn

 =


γT1 X
γT2 X
...

γTnX


where Y (j) represents Xp×n in lower dimension j × n.

Tr(Y (j)Y (j)T ) =

j∑
k=1

n∑
i=1

Y 2
ki, Y = Y (p)

Y Y T = (ΓTX)(ΓTX)T = ΓTXXTΓ = ΓTSΓ = ΓTΓDΓTΓ = D

p∑
k=1

n∑
i=1

Y 2
ki =

p∑
k=1

dk

j∑
k=1

n∑
i=1

Y 2
ki = Tr(Y (j)Y (j)T ) = tr(Γ(j)TXXTΓ(j)) = tr(Γ(j)TΓDΓTΓ(j)) =

j∑
k=1

dk

as

ΓTΓ(j) =

 γT1
...
γTp

( γ1 . . . γj
)
=


1 0 . . . 0
0 1 . . . 0
...

...
. . . 0

0 0 . . . 1
0 0 . . . 0


p×j

The proportion of variation explained by Y (j) is
∑j

k=1 dk∑p
k=1 dk

.

14.38 Population principle components

SupposeX is a random vector in Rp, X ∼ (µ,Σ), subtracting µ→ X ∼ (0,Σ) (does not have to be Gaussian).
Spectral decomposition Σ = ΓΛΓT =

∑p
i=1 λiγiγ

T
i , where Γ = (γ1, γ2, . . . , γn) and λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0.

Theorem 14.29 (1) g = γ1 maximize V ar(gTX) subject to ||g|| = 1, and the maximum is λ1.
(2) Among all unit vectors satisfying gT γ1 = 0 (equivalently, Cov(gTX, γT1 X) = 0 ⇔ gTΣγ1 = 0), g = γ2
maximize V ar(gTX), with maximum being λ2.
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Proof:
Cov(gTX,hTX) = gTΣh

Then use lemma.

Definition 14.30 yj = γTj X → j-th principal component of X.

y =

 y1
...
yp

 =

 γT1
...
γTp

X = ΓTX

Cov(y) = Cov(ΓTX) = Λ

14.39 Best linear prediction

Theorem 14.31 Suppose X ∼ (0,Σ), Σ = ΓΛΓT , λi > 0,∀i. Let Γ(j) = (Γ1, . . . ,Γj), then

(a) The best linear prediction of X in terms of Y (j) = Γ(j)TX is X̂ =
∑j
i=1 γjyj.

(b) The residual X⊥ = X − X̂ has covariance matrix

Σ⊥
(j) =

p∑
i=j+1

λiγiγ
T
i with tr(Σ⊥

(j)) =

p∑
i=j+1

λi

(c) For any matrix Aj×p, Let Z = AX and X⊥
Z = X − ΣXZΣ

−1
ZZZ, we have

tr(Σ⊥
Z ) = tr(Cov(X⊥

Z )) ≥
p∑

i=j+1

λi

The equality holds if and only if A = Γ(j)T .

14.40 PCA and SVD

Xp×n = (X1, . . . , Xn) =

 . . . V T1 . . .

. . .
... . . .

. . . V Tp . . .

 Singular value decomposition:

X = Lp×rCr×rR
T
r×n

Where
L = (l1, . . . , lr), C = diag(c1, . . . , cr), R = (r1, . . . , rr)

c1 ≥ c2 ≥ . . . ≥ cr > 0, r = rank(X)

Then
Lcol(X) = Lcol(L), Lrow(X) = Lrow(R

T ) = Lcol(R)

S = XXT = LC2LT , T = XTX = RC2RT , spectral decomposition

So L is the same as the principal factor.

L(j) = (l1, . . . , lj), C(j) = diag(c1, . . . , cj), R(j) = (r1, . . . , rj)

X =

r∑
i=1

licir
T
i , X̂(j) =

j∑
i=1

licir
T
i



Lemma 14.32
X̂(j) = L(j)C(j)R(j)T = L(j)L(j)TX = XR(j)R(j)T

where L(j)L(j)T is the projection matrix onto Lcol(l1, . . . , lj), first j principal factor.

Define X̂⊥
(j) = X − X̂(j) the residual of the approximation.

Define matrix norm: < A,B >= tr(ABT ) =
∑p
i=1

∑q
j=1 aijbij and ||A|| =< A,A >

1
2

Theorem 14.33 Among all j-dimensional subspace of Rp, L(l1, . . . , lj) maximized the projected square
length, and minimized the total orthogonal square residuals.

X̂(j) = L(j)C(j)R(j)T , (X̂(j))i =

j∑
i=1

lkckrik

Xi =

j∑
i=1

lkckrik

Y = LTX = CRT

14.41 Metric eigenvalues

Q(g) =
||g||2A
||g||2B

=
gTAg

gTBg
,A ≥ 0, B > 0

Define g̃ = B
1
2 g, g = B− 1

2 g̃ . Then

Q(g) =
g̃TB− 1

2AB− 1
2 g̃

g̃T g̃
=
g̃T Ãg̃

g̃T g̃
, where Ã = B− 1

2AB− 1
2

Consider spectral decomposition of Ã = B− 1
2AB− 1

2 = ΓλΓT , where

Λ = diag(λ1, . . . , λr, 0, . . . , 0), r = rank(Ã) = rank(A)

and Γ = (γ1, . . . , γp)

ξi = B− 1
2 γi, Ξ = B− 1

2Γ

Simultaneously diagonalization:

ΞAΞ = Λ, < ξi, ξj >A= λiδij

where δij = 1 for i = j and δij = 0 for i ̸= j. Similarly,

ΞBΞ = Ip, < ξi, ξj >B= δij

AΞ = (ΞT )−1Λ, BΞ = (ΞT )−1, AΞ = BΞΛ, Aξi = λiBξi

Definition 14.34 The values λ1, . . . , λp are called the eigenvalues of A in the B metric, ξ1, . . . , ξp are the
corresponding eigenvectors ⇔ det(A− λB) = 0.

Notions: L⊥
s (v1, . . . , vj) = {v : vT svi = 0, i = 1, . . . , j}. Then we have the corollary of the fundamental

lemma:
For Q(g) =

||g||2A
||g||2B

, g = ξ1 maximizes Q(g). · · · · · ·

14-3
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15.42 Fisher’s Linear Discriminant Analysis

Suppose we haveX1∼Np(µ1,Σ) andX2∼Np(µ2,Σ). We are interested in a 1-dimensional scalar that provides
the maximum separation of X1 and X2. For example, see Figure 15.42.

Figure 15.8: Projecting the data in the downward direction provides more variable separation than projecting
in the rightward direction.

In order to analyze this problem mathematically, we let Y1 = gTX1 and Y2 = gTX2 for some vector g.

Then, Y1∼Np(gTµ1, g
TΣg) and Y2∼Np(gTµ2, g

TΣg). We want to maximize (gTµ1−gTµ2)
2

gTΣg
. To simplify, we

let δ = µ1 − µ2, A = δδT , and B = Σ. Then, we consider the maximization of Q(g) = gTAg
gTBg

.

From the lemma in Lecture 14, we let Ã = B−1/2AB−1/2 = Σ−1/2δδTΣ−1/2 and γ1 = Σ−1/2δ. We now
have ξ1 = B−1/2γ1 = Σ−1δ and Ãγ1 = Σ−1/2δδTΣ−1/2Σ−1/2δ = λ1γ1 where λ1 = δTΣ−1δ. Because rank(Ã)
= 1, we also know λ2 = λ3 = ... = 0. The max value of Q(g) is λ1 = δTΣ−1δ = (µ1 − µ2)

TΣ−1(µ1 − µ2)
which is exactly the Mahalanobis Distance.

15.43 Critical Angles

Suppose there are two subspaces LB and LA, of dimension p and q respectively, located in an n-dimensional
space, as seen in Figure 15.43. We are interested in the smallest angles between subspaces, or critical angles.

To represent LB , we let Xp×n = (X1, X2, ..., Xn) = (v1, v2, ..., vp)
T . Then, LB = Lrow(X). LA is a

q-dimensional subspace of Rn, represented by projection matrix (PA)n×n. For all u ∈ LB , we can write the
row vector u = gTX for some vector g. Given u, the projection of u onto LA û, has the smallest angle
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Figure 15.9: The two subspaces shown here share a line in n-dimensional space. The smallest angle between
these two spaces is 0.

between u and LA (i.e. smallest cos2(θ(g)) where θ(g) is the angle between u and û). Mathematically, we
represent this as follows.

û = uPA = gTXPA = gT X̂ where X̂ = XPA

cos2(θ(g)) =
||û||2

||u||2
=
gT X̂X̂T g

gTXXT g
=
gTXPAX

T g

gTXXT g

We now define A = XPAX
T , B = XXT , and Ã = B−1/2AB−1/2. Then, B − A = X(I − PA)XT =

XP⊥
AX

T ≥ 0 and B−1/2(B − A)B−1/2 = I − Ã ≥ 0. The latter inequality implies the eigenvalues of Ã are
less than or equal to 1. We can organize these eigenvalues such that 1 ≥ λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0. The results
are as follows.

1. g = ξ1 and u1 = ξT1 X maximizes cos2(θ(g)) = λ1

2. g = ξ2 and u1 = ξT2 X maximizes cos2(θ(g)) = λ2 subject to gTAξ1 = 0, gTBξ1 = 0

...

k. g = ξk and u1 = ξTk X maximizes cos2(θ(g)) = λk subject to g
TAξi = 0, gTBξi = 0 ∀ i ∈ {1, 2, ..., k−1}

...

p. g = ξp and u1 = ξTp X maximizes cos2(θ(g)) = λp subject to g
TAξi = 0, gTBξi = 0 ∀ i ∈ {1, 2, ..., p−1}
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Geometry (p = g = 2, n = 3)

y2 ⊥ y1, ŷ2 ⊥ ŷ1

Y = ΞTX =

ξ
T
1 X
...

ξTp X

 =

y1...
yp



Ŷ = ΞT X̂ =

ξ
T
1 X̂
...

ξTp X̂

 =

ŷ1...
ŷp

 = ΞTXPA

Y Y T = ΞTXXTΞ = ΞTB = Ip

Ŷ Ŷ T = ΞTXPAX
TΞ = ΞTA = Λ

For pairs (yk, ŷk), k = 1, 2, ..., p
(1) The y′ks are mutually orthogonal ||yk||2 = 1.
(2) The ŷ′ks are mutually orthogonal ||ŷk||2 = λk.
(3) All 2p vectors are mutually orthogonal < yi, ŷj >= 0 if i ̸= j.
(4) The smallest possible angle between LA and LB is between y1, ŷ1.
The next smallest angle is achieved by y2, ŷ2.
From (1)-(3) we get that: [

Y

Ŷ

] [
Y T Ŷ T

]
=

[
Ip Λ
Λ Λ

]
Comments:
(1) The y and ŷ are intrinsic to LA and LB . They do not depend on the choices of the base.

Xp×n =

v1...
vp


(2) You can start from LA, then project onto LB and get the same answer.



Definition 15.35 θ1, θ2, ..., θp are called critical angles between LA and LB.

15-4



Chapter 16: Enter the title 16-1

ISYE 7405: Multivariate Data Analysis Georgia Tech

Chapter 16: Enter the title
Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

16.44 Canonical Correlations

R1, R2, ..., Rp and S1, S2, ..., Sq are random variables, R =
[
R1, · · · , Rp

]⊺
, S =

[
S1, · · · , Sq

]⊺
. Assume that

E(R) = E(S) = 0, ΣRR(p×p) > 0,ΣSS(q×q) > 0.
Recall:

⟨u, v⟩ = Cov(u, v), ⟨R,S⟩ = ΣRS

R̂ = ΣRSΣ
−1
SSS is the linear combination of S that has the highest correlation with R ≡ R projected to space

span by S.

ρ2(g) =
gTAg

gTBg

gTBg = Cov(gTR, gTR)

gTAg = Cov(gT R̂, gT R̂)

where A = ΣR̂R̂ = ΣRSΣ
−1
SSΣSR and B = ΣRR. We want to find g such that ρ2(g) is maximized.

Ã = B−1/2AB−1/2 = Σ
−1/2
RR ΣRSΣ

−1
SSΣSRΣ

−1/2
RR

Ã = ΓΛΓT

Ξ = B−1/2Γ = Σ
−1/2
RR Γ

Theorem 16.36

1. The greatest correlation2 is achieved by

Y1 = ξT1 R and Ŷ1 = ξT1 R̂ = ξT1 ΣRSΣ
−1
SSS,

the value is λ1.

2. The second greatest correlation2 between linear combination of R and linear combination of S is

Y2 = ξT2 R and Ŷ2 = ξT2 R̂,

subject to
Cov(Y2, Y1) = 0, Cov(Ŷ2, Ŷ1) = 0,

Cov(Y2, Ŷ1) = 0, Cov(Ŷ2, Y1) = 0.

3. · · · · · ·

Definition 16.37
√
λ1,
√
λ2, ...,

√
λp is called the canonical correlation between R and S, when p = 1. This

is multiple correlation.
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16.45 Projection ratio and critical angles

p−dim subspace LB
p−dim volume of C: V olp(C)
q−dim subspace (p ≤ q)
p−dim volume of Ĉ: V olp(Ĉ)

Theorem 16.38 The p−dim volume of C and Ĉ are related by V olp(Ĉ) = V olp(C)
∏p
k=1 cos θk, where

θ1, θ2, ..., θk are critical angles.

Proof:

1. Rectangles:



V ol(Ĉ) = ||ŷ1|| · ||ŷ2||
V ol(C) = ||y1|| · ||y2||
V ol(Ĉ)

V ol(C)
=
|ŷ1||
||y1||

· |ŷ2||
||y2||

= cos θ1 · cos θ2

2. Project what we have onto axis ŷ1, ŷ2.

3. What we get can be approximated by rectangles, since Ĉ consists still only of rectangles.

16-3
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There are k population group π1, π2, ..., πk, each has probability density function fj(x), j = 1, 2, ..., k.
The goal: given a future observation x, allocate x into one of the groups.

Classification rule: A division of Rp into disjoint regions R1, R2, ..., Rk such that
k⋃
i=1

Ri = Rp (or the

full space). Therefore, allocate x into πj if x ∈ Rj .

17.46 Maximum Likelihood Classification Rule

Allocate x to the group that gives the largest likelihood to x, L(x) = argmax{fj(x)}

17.46.1 Example: Multinomial distribution (k = 2)

Π1 : multi(n, α1, α2, ..., αg)

Π2 : multi(n, β1, β2, ..., βg)

n!

x1!x2!..xg!

g∏
i=1

αxi
i −→ Group 1 likelihood

n!

x1!x2!..xg!

g∏
i=1

βxi
i −→ Group 2 likelihood

=⇒ log likelihood ratio =

g∑
i=1

xi log(
αi
βi

)

{
> 0 x to π1

< 0 x to π2
,

where
∑g
i=1 xi log(

αi

βi
) is linear boundary.

17.46.2 Example: Fisher’s Linear Discriminant Analysis

Group Πi: X ∼ Np(µi,Σ).
Maximum likelihood classifier (general likelihood rule):

L(X) = argmin
j

(X − µj)⊤Σ−1(X − µj).

For specific case: K = 2,

L(X) : (µ1 − µ2)
⊤Σ−1(X − µ1 + µ2

2
)

{
> 0 → X ∈ Π1

< 0 → X ∈ Π2

.

In other words, if define δ := µ1 − µ2, the classifier is checking the inner product of Σ−1δ and (X − µ1+µ2

2 )
to classify X. The following is a pictorial demonstration.
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Figure 17.10: Linear Discriminant Analysis Example

17.47 Bayesian Perspective

Joint model (X,Y ), where Y is the class label. Denote
Likelihood: fj(X) = f(X|Y = j);
Prior: πj = π(Y = j);
Posterior: P (Y = j|X).
For specific case: K = 2, the log posterior ratio is

log
P (Y = 0|X)

P (Y = 1|X)
= log

π0 · f(X|Y = 0)

π1 · f(X|Y = 1)
= log

π0
π1

+ log
f(X|Y = 0)

f(X|Y = 1)

(in Normal case→) = log
π0
π1

+X⊤Σ−1δ + constant.

⇒ P (Y = j|X) ∝ π(Y = j) · f(X|Y = j). (i.e. posterior ∝ prior · likelihood)

17.48 Sample Version

In practice, we do not know θ in the fj(X|θ). Simple solution is to get an estimation θ̂ and plug in θ ← θ̂.

(For example, in linear discriminant analysis analysis, θ = (µ1, µ2,Σ) and θ̂ = (µ̂1, µ̂2, Σ̂).)

Issue: need to consider the variation in θ̂ caused by estimation uncertainty. This issue is hard to address
using frequentist approach but can be well addressed under Bayesian perspective.
θ̂ in Bayesian comes from Pj(θ|X) where X is in the jth group. Then the classification rule

Lj(Xnew|X) =

∫
fj(Xnew|θ)Pj(θ|X)dθ

integrates variations of θ. It is called posterior predictive distribution.
The advantage of Bayesian setting over frequentist is that Bayesian setting incorporates the variation of θ
in the posterior predictive distribution, which frequentist cannot do.
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17.49 Logistic Regression

With Y ∈ {1, 2, ...,K} and X, logistic regression has the following form:

P (Y = k|X = x) =
exp{βk0 + β⊤

k x}
1 +

∑K−1
l=1 exp{βk0 + β⊤

l x}
, k = 1, 2, ...,K − 1,

P (Y = K|X = x) =
1

1 +
∑K−1
l=1 exp{βk0 + β⊤

l x}
.

Equivalently (relative form):

log
P (Y = k|X = x)

P (Y = K|X = x)
= βk0 + β⊤

k x, k = 1, 2, ...,K − 1.

Let’s assume K = 2 from now on. Then

log
P (Y = 1|X = x)

P (Y = 2|X = x)
= β0 + β⊤

1 x.

Recall Linear Discriminant Analysis (from previous notes), the decision boundary is

(µ1 − µ2)
⊤Σ−1(X − µ1 + µ2

2
)

{
> 0 → X ∈ Π1

< 0 → X ∈ Π2

.

In the posterior form:

log
P (Y = 1|X = x)

P (Y = 2|X = x)
= log

π0
π1

+ log
f(x|Y = 0)

f(x|Y = 1)
= constant + x⊤Σ−1δ (note:δ = µ1 − µ2)

= α0 + α⊤
1 x.

Therefore, Logistic Regression and Linear Discriminant Analysis both use hyperplane as decision boundary.
However, they estimate the coefficients differently.

• Linear Discriminant Analysis: (X|Y = k) ∼ N(µk,Σ). The full likelihood is

P (X,Y ) = P (X|Y ) · P (Y ).

In estimation, the method gets µ̂k, Σ̂ for boundary Σ̂−1δ̂ to maximize full likelihood.

• Logistic Regression: The partial likelihood is∏
i

P (Y = yi|X = xi).

In estimation, the method gets β0, β1 directly to maximize partial likelihood.

Comments on the comparison of these two methods:

1. Linear Discriminant Analysis: model bottom up (model the distribution of each group P (X|Y = k),
more statistical).

P (X,Y ) = P (X|Y ) · P (Y ), P (X) =

∫
P (X,Y )dY.

P (X) is normal mixture.
If your underlying data is close to normal, then Linear Discriminant Analysis will be more efficient.



2. Logistic Regression: model top down (model partial data P (Y = k|X = x), more machine learning).
P (X) is not specified. Since not assuming normality, it is “robust”. Being “robust” means if the real
data is indeed not normal, the method still holds; but if the data is close to normal, it loses efficiency
(roughly 30%).
Also, if data is perfectly separable, it could cause issue for logistic regression, not for linear discriminant
analysis.

The following are some pictorial comparisons of these two methods in 2-dimensional cases.

1. When the data is normal (and separable), Linear Discriminant Analysis is more efficient. The three
lines for Logistic Regression are equally good, since the likelihood is at global maximum at all of them.

Figure 17.11: Data is normal

2. When the data is not normal, Logistic Regression is more efficient.

Figure 17.12: Data is not normal

3. When the data is not linearly separable, two methods would both fail.

The common feature of these two methods is they both use separating hyperplane. In the next lecture,
we will introduce support vector machine which uses data close to the margin of groups to find separating
hyperplane.

17-4
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18.50 Separating hyperplace

Let f(x) = β0 + βT1 x and define L = {x : f(x) = 0}. Then

• For any two points x1, x2 on L, we have βT1 (x1 − x2) = 0.

• If we define the unit normal vector β∗ = β1

∥β1∥ , then for any x, the signal distance of x to L satisfies

d(x, L) = (β∗)T (x− x0) =
βT1
∥β1∥

(x− x0) =
βT1 x

∥β1∥
− βT1 x0
∥β1∥

=
β0 + βT1 x

∥β1∥
,

where x0 is an arbitary point on L. Therefore, G(x) = sgn(f(x)) gives the classification.

18.51 Rosenblatt’s Perception learning algorithm

We try to find a hyperplace by minimizing the distance of misclassified points to the boundary.
DefineM as the set of misclassified points, then we aim to minimize D(β0, β1) subject to ∥β1∥ = 1, where

D(β0, β1) =
∑
i∈M
|β0 + βT1 xi|.

Moreover, if we label yi ∈ {−1, 1}, we have

D(β0, β1) =
∑
i∈M
|β0 + βT1 xi| =

∑
i∈M
−yi(β0 + βT1 xi)

=
∑
i

(−yi(β0 + βT1 xi))+.

Assuming that M is fixed, we take the derivatives and obtain
∂D

∂β1
= −

∑
i∈M

yixi

∂D

∂β0
= −

∑
i∈M

yi

(18.10)
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18.51.1 Algorithm: stochastic gradient decent

Instead of computing the sum in (18.10), the gradient decent step is taken after each observation is visited.
For each i in M , we update (β1, β0)

T by (β1, β0)
T = (β1, β0)

T + η(yixi, yi)
T .

Gradient decent possesses two nice properties: 1. the simple algorithm is easy to code; 2. if the classes
are separable, then the algorithm will stop in finite iterations. However, there are some issues about the
algorithms. It converges very slowly and never converge in non-separable case. Also, it produces infinite
solutions in separable case.

18.52 Optimal separating hyperplane

In separable case, we want to find the hyperplane that maximizes the minimal distance from either class.

Recall we have proved for any x, the signal distance to the hyperplane is
β0+β

T
1 x

∥β1∥ , then we aim to solve the

following optimization problem

max
β0,β1

{min
i

yi(β0 + βT1 x)

∥β1∥
},

or equivalently

max
β0,β1

C, s.t.
yi(β0 + βT1 x)

∥β1∥
} ≥ C, ∀i,

or equivalently
max

β0,∥β1∥=1
C, s.t. yi(β0 + βT1 x) ≥ C, ∀i,

or equivalently, take ∥β1∥ = 1
C ,

max
β0,∥β1∥=1

∥β1∥ , s.t. yi(β0 + βT1 x) ≥ 1, ∀i,

We introduce the Lagrange multiplier Lp

Lp =
1

2
∥β1∥2 −

∑
i

αi(yi(β0 + βT1 x)− 1), (18.11)

where αi are non-negative coefficients. Taking derivatives with β0 and β1, we obtain
β1 =

∑
i

αiyixi

0 =
∑
i

αiyi
(18.12)

Substitute (18.12) back into (18.11), we have

Lp =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjx
T
i xj (18.13)

From convex optimization with convex constraint, we also have KKT conditions

αi(yi(β0 + βT1 xi − 1) = 0,∀i, (18.14)

which means either αi = 0, or αi>0, yi(β0 + βT1 xi) = 1.
We can get optimized β0, β1 from (18.12),(18.13),(18.14) and we can find only support vectors determine

the β0, β1. Because (18.12) means β1 depends only on points with αi>0. In other word, β1 only depends on
support points.



18.53 Comparison of Optimal Separating Hyperplane(OSH) with
Linear Discriminant Analysis(LDA)

• LDA bottom up. OSH top down.

• OSH more robust to outliers.

• OSH sensitive to support vectors(support points).

• Only partially true that β0, β1 only depends on support points(“which ones are support points” depends
on the entire set.)

• If data is indeed normal, LDA is more efficient.

• If data is not linearly separable, OSH will fail but LDA will still work.

18-3
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19.54 Convex Optimization

Assume f, g, h are all convex (h must be affine as well to have a convex program).

argmin f(x) (Primal Objective)

s.t gi(x) ≤ 0,∀i = 1, 2, ..., nI (Constraints)

hj(x) = 0,∀j = 1, 2, ..., nE

x ∈ Rp

The set X = {x ∈ Rp : gi(x) ≤ 0,∀i = 1, 2, ..., nI , hj(x) = 0,∀j = 1, 2, ..., nE} is called the primal feasible set.
If a solution exists to the problem is denoted by x∗ and it’s called primal solution. Respectively, p∗ = f(x∗)
is the primal optimum.

19.54.1 Lagrangian Function

We define ∀x ∈ Rp,∀λ ∈ RnI and ν ∈ RE .

L(x, λ, ν) = f(x) +

nI∑
i=1

λigi(x) +

nE∑
j=1

νjhj(x)

The Lagrange dual function for λ ∈ RnI
+

Λ(λ, ν) = inf
x∈Rp

L(x, λ, ν)

It holds that the dual function is always less or equal to primal optimum p∗. Indeed, ∀λ ∈ RnI
+ , ν ∈ RE :

Λ(λ, ν) = inf
x∈Rp

L(x, λ, ν) ≤ inf
x̃∈X

L(x̃, λ, ν) = infx̃∈X(f(x̃) +
∑
i

λigi(x̃)︸ ︷︷ ︸
≤ 0

+
∑
j

νjhj(x̃))︸ ︷︷ ︸
=0

≤ infx̃∈X(f(x̃)) = p∗

Thus ∀λ ≥ 0,Λ(λ, ν) ≤ p∗

19.54.2 Dual problem

argmax Λ(λ, ν)

s.t λ ≥ 0, ν

Dual feasible set: Z = {λ, ν : λ ∈ RnI
+ , ν ∈ RnE}. Dual solution is denoted by λ∗, ν∗ and the dual optimum

as d∗ ≤ p∗.
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19.54.3 KKT conditions

Necessary and sufficient for p∗ = d∗. Necessary conditions:

p∗ = f(x∗) = d∗ = g(λ∗, ν∗) = inf
x∈Rp

(f(x)+
∑
i

λ∗i gi(x)+
∑
j

v∗jhj(x)) ≤ f(x∗)+
∑
i

λ∗i gi(x
∗)+

∑
j

v∗jhj(x
∗) ≤ f(x∗)

x∗ minimizes L(x, λ∗, ν∗) over all x ∈ Rp. If L is convex differentiable, then

∇xL(x∗, λ∗, ν∗) = 0⇐⇒ ∇xf(x∗) +
∑
i

λ∗i∇xgi(x∗) +
∑
j

v∗J∇xhj(x∗) = 0 (19.15)

We also get
λ∗i gi(x

∗) = 0,∀i = 1, 2, ..., nI ⇐⇒ λ∗i = 0 or gi(x
∗) = 0,∀i = 1, 2, ..., nI (19.16)

Finally, for x∗ ∈ X, (λ∗, ν∗) ∈ Z:
gi(x

∗) ≤ 0, λ∗i ≥ 0, hj(x
∗) = 0 (19.17)

(19.1), (19.2), (19.3) constitute the KKT conditions.

19.54.4 Sufficient conditions

Suppose x̃, λ̃, ν̃ satisfy (19.1), (19.2), (19.3). Then

x→ L(x, λ̃, ν̃)

has gradient zero at x̃. Now, if x ∈ L(x, λ̃, ν̃ is convex then x̃ must be the minimizer.

g(λ̃, ν̃) = inf
x∈R

L(x, λ̃, ν̃) = L(x̃, λ̃, ν̃) = f(x̃) +
∑
i

λ̃igi(x̃) +
∑
j

ν̃jhj(x̃) = f(x̃)

However, we also have ∀λ, ν g(λ, ν),≤ p∗ = infx∈X f(x)⇒ λ̃, ν̃, x̃ makes equality hold⇒ x̃ is minimizer
for infx∈X f(x) and λ̃, ν̃ minimize g(λ, ν).

19.55 Classification

Classes:
Y1, ..., YN ∈ {−1, 1}

Features:
X1, ..., XN

Discriminant function f(x) and choosen class G(x) = sgn{f(x)}.

19.55.1 Model based

Linear Discriminant Analysis. Full likelihood (X,Y )

P (Y = k) = πk, P (X|Y = k) ∼ N (µk,Σ)

f(x) = β⊤x+ β0 = (Σ̂−1(µ̂1 − µ̂2))
⊤(x− µ̂2 − µ̂1

2
)

Logistic Regression:

P (Y |X) =
exp(f(x))

1 + exp(f(x))
, f(x) = β⊤x+ β0
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19.55.2 Separating Hyperplanes

minimize misclassification.

• Optimal SH. problem: Fails when data not linearly separable.

• Support vector classification

Idea for Support vector classification: introduce slack variables:

ξ1, ξ2, ..., ξN s.t ξi ≥ 0,
∑
i

ξi ≤ Constant

Optimize margin but with slack:
yi(β0 + β⊤

1 xi) ≥ C(1− ξi) ∀i

(ξ = 0) outside margin, (0 < ξi < 1) inside margin, (ξ > 1) wrong classification. Problem:

max C

s.t β0, ||β1|| = 1

Let β̃ = β
c , β0 = β0

c , ||β̃|| =
1
c . The dual of the above problem is:

min
1

2
||β1||2 + r

∑
i

ξi

s.t yi(β0 + β⊤
1 ξi) ≥ 1− ξi, ξ ≥ 0

Using KKT conditions: Lp =
1
2 ||β1||

2 + r
∑
i ξi + αi[(1− ξi)− yi(ξ⊤i β1 + β0)]−

∑
i ξiµi.

0 =
∂Lp
∂β1

= β1 −
N∑
i=1

αiyixi

0 =
∂Lp
∂β0

=
∑

αiyi

0 =
∂Lp
∂ξi

= r − µi − αi ⇒ αi = r − µi ⇒ αi ∈ [0, r]

Substituting back, the dual objective function becomes:

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjx
⊤
i xj

The problem becomes:

max LD

s.t 0 ≤ αi ≤ r,
∑

αiyi = 0

The rest of the KKT: {
αi[yi(x

⊤
i β1 + β0)− (1− ξi)] = 0

µiξi = 0

yi(x
⊤
i β1 + β0) − (1 − ξi) ≥ 0, ξi ≥ 0. β1 =

∑
i αiyixi. β1 depends only on i for which αi ̸= 0. For support

vectors αi ̸= 0⇒ yi(x
⊤
i β1 + β0)− (1− ξi) = 0.



For αi ̸= 0 : 
ξi = 0 on the edge

0 < ξi < 1 in the margin

ξi > 1 misclassified

For those αi = 0, ”inner points” no effect on β.

19-4
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20.56 Support Vector Machine

Enlarge feature xi using basis expansions (e.g. xi, x
2
i , x

3
i ):

h(xi) = (h1(xi), h2(xi), ...hm(xi))

Fit Support Vector linear classifier on hi(x) with discriminant function

f(x) = β⊤h(x) + β0

and decision
G(x) = sign(f(x))

Lagrangian dual with the enlarged basis function:

L0 =

N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjh(xi)
⊤h(xj)

=

N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj⟨h(xi), h(xj)⟩

β =

N∑
i=1

αiyih(xi)

f(x) = β⊤h(x) + β0

=

N∑
i=1

αiyih(xi)
⊤h(x) + beta0

=

N∑
i=1

αiyi⟨h(xi), h(x)⟩+ β0

KKT conditions:

αi(yif(xi)− (1− ξi)) = 0

yif(xi)− (1− ξi) ≥ 0

Observation: h is related to prediction and optimization only through ⟨h(xi), h(xj)⟩ so we do not need
to specify h(x) at all. It is sufficient to specify ⟨h(x), h(x′)⟩ for all x, x′.

Kernel function:
K(x, x′) := ⟨h(x), h(x′)⟩.

As long as I know K(x, x′), I don’t need to know h.
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K(x, x′) is symmetric:
K(x, x′) = K(x′, x);

and positive definite

∀n, ∀x1, ..., xn, K


x1...
xn

 ,

x1...
xn


 =



K(x1, x1) K(x1, x2) · · · K(x1, xn)
K(x2, x1) K(x2, x2) · · · K(x2, xn)

...
...

. . .
...

K(xn, x1) K(xn, x2) · · · K(xn, xn)




is positive definite matrix.

f(x) =

N∑
i=1

αiyiK(xi, x) + β0

L0 =

N∑
i=1

αi −
∑
i,j

αiαjyiyjK(xi, xj)

With a kernel function, the support vector classifier is referred to as support vector machine.
Some choices of the kernel K(xi, xj)

1. d-th polynomial: K(x, x′) = (1 + ⟨x, x′⟩)d

2. Gaussian radial kernel: K(x, x′) = exp
{
−∥x−x′∥2

c

}
3. Neural network: K(x, x′) = tanh(K1(x, x

′) +K2) (tanh(x) = ex−e−x

ex+e−x )

20.56.1 Tuning parameter r

large r ⇒ fewer possible ξ ⇒ less mis-classification ⇒ boundary more ”wiggly”

small r ⇒ ∥β∥2 small,
∑
ξi to be large⇒ more positive ξ ⇒ more tolerant on mis-classification⇒ boundary

will be smooth

Cross-validation to tune r.
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20.56.2 Loss function

SVM:

min D(β) =
1

2
∥β∥2 + r

N∑
i=1

ξi

s.t. ξi ≥ 0

yi(x
⊤
i β + β0) ≥ 1− ξi

⇔ min

N∑
i=1

(1− yi(f(xi)))+ + λ∥β∥2 λ =
1

2r

L(y, f) = (1− yif)+
where

f = βx+ β0

if linear.
LDA: L(y, f) = (Y − f)2 = (1 − Y f)2. Linear regression as if y ∈ {−1, 1} are continuous response

variable.
Hint: Y = (−1,+1,−1,+1)⊤, X = (x1, ..., xn), X̄ = 0, and n1, n2 with n1 + n2 = N , n1 = n2.

(β̂0, β̂) = (X̃X̃⊤)−1X̃Y, X̃ =

(
1⊤
n

X

)
X̃X̃⊤ =

(
n 0

0 nΣ̂

)
Σ̂ =

XX⊤

n

X̃Y =

(
n1 − n2

n1X̄1 + n2X̄2

)
(β̂0, β̂) =

(
0,

1

n
Σ̂−1(X̄1 − X̄2)

)
f(x) = Σ̂−1(µ̂2 − µ̂1)(x−

µ̂2 + µ̂1

2
)

which is the same as LDA.
Logistic regression:

P (Y = 1|X) =
ef

1 + ef
=

1

e−f + 1

P (Y = −1|X) =
1

1 + ef

⇒ P (Y |X) =
1

1 + e−Y f

minimize : − logP (Y |X) = − log
1

1 + e−Y f
= L(y, f)

Support vector classifier, LDA, logistic regression are all linear classifier trained with different loss function.



20.56.3 Kernel and linear classifier

Support Vector Classifier
L(y, f) = (1− yf)+

non-linear−−−−−−→
kernel

Support Vector Machine

Linear Discriminant Analysis
L(y, f) = (y − f)2 = (1− yf)2

non-linear−−−−−−→
kernel

Gaussian Process Classification

Logistic Regression
L(y, f) = log

(
1 + e−yf

) non-linear−−−−−−→
kernel

?

Linear Regression
(y − f)2

X(X⊤X)−1X⊤y (X⊤X → ⟨x, x⟩)
−→ Gaussian Process Classification

20.57 Clustering Analysis

(Xi, Yi) - classification. Yi = ±1 have it at least for training data.
(Xi)

n
i=1 - clustering. Xi: p dimensions.
Goal: given n observations which are believed to be heterogenous. Want to group them into K homoge-

nous subpopulations, where K is also unknown.
Distances and dissimulating measures - X, X ′, d(X,X ′): real valued
d is said to be a dissimulating measures if

1. symmetry: d(X,X ′) = d(X ′, X)

2. non-negativity: d(X,X ′) ≥ 0

3. identification: d(X,X) = 0

20-4
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21.58 Distance & dissimulating measures

x, x′ d(x, x′) : real valued. d is said to be a dissimulating measure if:

(1) symmetry: d(x, x′) = d(x′, x)

(2) non-negativity: d(x, x′) ≥ 0

(3) identification: d(x, x) = 0

If furthermore, d satisfies

(4) definiteness: d(x, x′) = 0 iff x = x′

(5) triangular inequality: d(x, x′) ≤ d(x, y) + d(y, x′). Then d is called a distance metric.

21.58.1 Quantitative variables

(xi)j ∈ R, xi ∈ Rp

• Euclidean distance: d(x, x′) = ∥x− x′∥

e.g. L2 distance: d(x, x′) =
√∑p

j=1(xj − x′j)2

L1 distance: d(x, x′) =
∑p
j=1 |xj − x′j |

• Pearson distance: d2(x, x′) =
∑p
j=1

(xj−x′
j)

2

s2j

s2j : the variance of jth feature
sj can be replaced by some robust measure of “spread”
e.g. sj = interquantile range

• Mahalanobis distance: d2(x, x′) = (x− x′)
∑̂−1

(x− x′)∑̂
= I → L2 distance∑̂
= diag → Pearson distance

“How to estimate precision matrix
∑−1

(sparse)”

21.58.2 Ordinal variables

e.g. rank of preference
often coded by contiguous integers. such as 1, 2, ...,M

often treated by replacing i by
i− 1

2

M & pretend as if they are quantitative in nature
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21.58.3 Categorical variables

“look up” table dissimulating matrix

21.59 Clustering algorithms

• Model based

Assume xi are independent, each comes from any one of g possible sub-populations with density function
f(xi, θk), k = 1, 2, ..., g.

likelihood: Let γ =

γ1...
γn

 to be assignment of xi. γi ∈ {1, 2, ..., g} . One way is to view γ as parameters.

Ck = {i : γi = k}

L(γ, θ1, ..., θk) =

g∏
k=1

∏
i∈Ck

f(xi, θk)

The MLE:

(γ̂, θ̂1, ..., θ̂k) = argmax
γ,θ1,...,θk

L

Issue:

(1) combinetorial optimization

(2) treating γ as parameters is arguable

Better approach: view γ as missing data

special case: treat f(x, θk)
i.i.d∼ N (µk,Σk) complete data likelihood:

L(θ1, ..., θk;x, γ) = L(µ1, ..., µg,Σ1, ...,Σg, τ1, ..., τg)

=

g∏
i=1

g∑
k=1

1{γi=k}τkϕ(xi;µk,Σk))
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log likelihood:

log L =

n∑
i=1

g∑
k=1

1{γi=k}(log τk + log ϕ(xi;µk,Σk))

21.59.1 Expectation-Maximization Algorithm

E-step:

Q(θ|θ(t)) = Eγ|x,θ(t)(logL(θ;x, γ))

= Eγ|x,θ(t)

(
n∑
i=1

g∑
k=1

1{γi=k}(log τk + log ϕ(xi;µk,Σk))

)

=

n∑
i=1

g∑
k=1

(Eγ|x,θ(t)(1{γi=k}))(log τk + log ϕ(xi;µk,Σk))

=

n∑
i=1

g∑
k=1

(T
(k)
ik )(log τk + log ϕ(xi;µk,Σk))

T
(t)
ik = P (γi = k|xi = xi, θ

(t))

=
τ
(t)
k ϕ(xi;µ

(t)
k ,Σ

(t)
k )∑g

j=1 τ
(t)
j ϕ(xi;µ

(t)
j ,Σ

(t)
j )

M-step: maximizing

θ(t+1) = argmax
θ

Q(θ|θ(t))

argmax
τk,µk,Σk

n∑
i=1

g∑
k=1

T
(k)
ik (log τk + log ϕ(xi;µk,Σk))

where

n∑
i=1

g∑
k=1

T
(k)
ik (log τk+log ϕ(xi;µk,Σk)) =

∑
i

∑
k

T
(k)
ik log τk+

∑
i

∑
k

T
(k)
ik

(
−1

2

[
(xi − µk)TΣ−1

k (xi − µk) + det(Σk)
])

τ
(t+1)
k =

∑n
i=1 T

(t)
ik∑g

j=1

∑n
i=1 T

(t)
ij

=
1

n

n∑
i=1

T
(t)
ik

µ
(t+1)
k =

∑n
i=1 T

(t)
ik xi∑n

i=1 T
(t)
ik

Σk =

∑n
i=1 T

(t)
ik (xi − µk)(t+1))(xi − µ(t+1)

k )T∑n
i=1 T

(t)
ik

local maximizer



21.59.2 Combinatorial Algorithm

Seek the cluster assignment that minimizes some loss function based on dissimulating measures.

A natural choice of loss function

W (γ) =
1

2

g∑
k=1

∑
i,j,γ(i)=γ(j)=k

d(xi, xj), γ → assignment

total within-class distance

Equivalent description:

B(γ) =
1

2

g∑
k=1

∑
i,j,γ(i)=γ(j)̸=k

d(xi, xj)

total between-class distance

21.59.3 K-means Algorithm

K-means algorithm assumes all variables are quantitative and use Euclidean L2 distance2 as dissimulating
metric.

W (γ) =
1

2

g∑
k=1

∑
i,j,γ(i)=γ(j)=k

∥xi − xj∥2

=
1

2

g∑
k=1

nk
∑

i,γ(i)=k

∥xi − x̄k∥2

where

x̄k = mean vector from the k-th cluster

nk = cluster size of the k-th cluster

An iterative desent algorithm: minimizing the following within-class distance

min
γ,m

g∑
k=1

nk
∑
γ(i)=k

∥xi −mk∥2

t

21-4
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23.60 Factor Analysis

A mathematical model that attempts to explain the correlation between a large set of variables in terms of
a small number of underlying factors (assuming that the underlying factors are not observed).
The factor model:

Ypy
observation

= Λfky
factors

+ u + µpy
mean of Yp-constant

Λp×k: factor loading matrix, constant across observations.
u: random vector, unique factor (specific).
Assumptions:

E(f) = 0, E(u) = 0.

Cov(f) = I, Cov(u) = diag(ψ1, ..., ψp) = ψ

Cov(f, u) = 0

=⇒ E(Y ) = µp, Cov(Y ) = ΛΛT + ψ ≜ Σ

23.60.1 Factor models are scale-invariant

suppose Z = C · Y, C = diag(c1, ..., cp)

= (CΛ)f + Cu+ Cµ

23.60.2 Issue: Rotation Invariant

Y = (ΛΓ)(ΓT f) + u+ µ, Γ : orthogonal matrix

f ′ = ΓT f, Λ′ = Λf, Y = Λ′f ′ + u+ µ

We need further constraints to make model identifiable.
Common constraints:

(1) ΛTψ−1Λ is diagonal, otherwise (if not diagonal) we do spectral decomposition on ΛTψ−1Λ = ΓΛ∗ΓT ,
then we take this Γ. Let Λ̃ ≜ ΛΓ, then Λ̃Tψ−1Λ̃ is to be diagonal.

or (2) ΛTD−1Λ is diagonal, where D = diag(Σ) = diag(σ11, σ22, ..., σpp); If data is standardized, i.e.,
diag(Σ) = (1, 1, ..., 1), (2) then will be constraint: ΛTΛ = diagonal.
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23.60.3 Count # of Free Parameters

Σ :
1

2
p (p+ 1) for free

Λ & ψ : p k + p for free

Constraint (1) or (2) requires a k × k matrix ((ΛTψ−1Λ)k×k, (Λ
TD−1Λ)k×k) to be diagonal.

1

2
k(k − 1) constraints

Total freedom :
1

2
p(p+ 1)− [pk + p− 1

2
k(k − 1)]

=
1

2
(p− k)2 − 1

2
(p+ k).

No guarantee this is > 0. For the usual usecase, k ≪ p, then the model is “fine”.

23.60.3.1 Example

p = 3, k = 1, degree of freedom = 0, the solution is unique.
ψ ≥ 0, otherwise cannot be covariance matrix.

23.60.4 How to estimate

µ̂ = Ȳ

“MLE” by assuming

Y ∼ N (µ,Σ)

where

Σ = ΛΛT + ψ

subject to constraints

ΛTψ−1Λ = diag

or ΛTD−1Λ = diag

fY (y) =
1

(
√
2π)p det(ΛΛT + ψ)

1
2

exp(−1

2
(y − µ)(ΛΛT + ψ)−1(y − µ))

ℓ(Λ, ψ; y1, ..., yn) =

n∑
i=1

logY (yi)

Λ̂, ψ̂ = argmax
Λ,ψ

ℓ(Λ, ψ)

Let Σ̂ be sample variance-covariance matrix. Σ̂ = 1
n−1

∑n
i=1(yi − ȳ)(yi − ȳ)T .

We know Σ̂ is MLE without Σ = ΛΛT + ψ constraints.

max
Λ

ℓ(Λ, ψ) ⇔ min
Λ

loss(Σ̂,Λ),



where loss function is sum of square of all off-diagonal elements.

⇔ min
Λ

∑
i<j

(Σ̂− ΛΛT )2ij

If not normal, this estimate can be thought as Method of Moments estimation. Or, can be thought as
quasi-MLE if Gaussian is mis-specified.
“MLE ”(or quasi-MLE) helps for hypothesis testing to decide k.

Generalized likelihood testing: −2 logLR ∼ χ2
df1−df2

In the special case where data are standardized, diag(Σ̂) = (1, 1, ..., 1)

• then ΛΛT is also the model correlation matrix (on off-diag elements).

• and diag(ΛΛT ) is the proportion of variance explained by factors.

Comparison: F A PCA
(1) model based model free
(2) degree of freedom when choosing k choose as many as you like
(3) uniqueness(rotation) no such issue

(4)
don’t interpret the factor,
but can be used for comparison, prediction.

interpretation: direction with
max variability across data.

(5)

min
Λ

∑
i<j

(Σ̂− ΛΛT )2ij

minimize off-diag difference
Σ = ΛΛT + ψ

model for correlation

min
∑
i,j

(Σ̂− Γ(k)Λ(k)Γ(k)T )2ij

for the first k principal components.
all elements difference
Σ = Γ(k)Λ(k)Γ(k)T

model for entire variance covariance

23.61 Independent Component Analysis (ICA) [Signal Process-
ing]

Model Y = Λf + u+ µ
Assumption: f and u are independent.

1. fi ⨿ fj , fi ⨿ uj , ui ⨿ uj

2. fi’s are non-Gaussian.

23-3
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24.62 Independent Component Analysis (ICA). [signal process-
ing]

• Model

YP = Λp×kfk + u+ µ

• Assumption

f and u are independent.

• fi⊥fj .fi⊥uj .ui⊥uj
• fi’ s are non-Gaussian

• Simple case

Cocktail Party Problem:k person in the room with P microphone

Y = Λf ,p = k.

g: joint distribution of f . gi: distribution of fi under in dependence:

g (f) =
k∏
i=1

gi (fi)

Use KL divergence to measure distance between g and
k∏
i=1

gi (fi)

KL (g, h) = −Eg
(
log h

g

)
Then

KL

(
g,

k∏
i=1

gi

)
=−

∫ ( k∑
i=1

log gi (fi)− log g

(
f
∼

))
g

(
f
∼

)
df

∼

=

k∑
i=1

∫
− log gi (fi) g (fi) dfi −

∫
− log g

(
f
∼

)
g

(
f
∼

)
df

∼

=

k∑
i=1

Entropy (gi)− Entropy (g)

Since P = K
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Y = Λf .f = Λ−1Y .

Entropy is in variant under linear transformation. So,

Entropy (g)=Entropy(Y ) and is observed.

min KL

(
g,

k∏
i=1

gi

)
⇔min Σ

i
Entropy(fi) (*)

Given mean and variance, Gaussian maximizes the entropy.

(*) ⇔ Given mean and variance, we are moving away from Gaussian.

24.63 Gaussian Process

• Linear Regression

• Ridge Regression

• Bayesian Linear Regression

• Gaussian Process Regression

24.63.1 Linear Regression

• Response

Y =

 y1
...
yn


• Predictor (Feature Matrix)

Xn×p =


x1
x2
...

xn


where x1 · · ·xn are row vectors of length p (p features )
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• Model

Y = Xβ + ε
ε ∼

(
0, σ2

)
doesn’t have to be Gaussian

• Training (Estimation of β)

Minimize loss function in MSE (mean square error )

LMSE (β) = 1
n

n∑
i=1

(yi − xiβ)2 = 1
n (Y −Xβ)

T
(Y −Xβ)

In the case where ε ∼ N
(
0, σ2

)
, the log likelihood can be loss function

loglike (β) =
n∑
i=1

[
− 1

2 log
(
2πσ2

)
− 1

2
(yi−xiβ)

2

σ2

]
which is closely related to LMSE

Then,

argmin
β

LMSE (β)⇔ argmax
β

loglike (β)

Check:

O = ∂LMSE

∂β = 2
n

(
−XT

)
(Y −Xβ)⇒ β̂OLS =

(
XTX

)−1
XTY

Ŷ = Xβ̂ = X
(
XTX

)−1
XTY

Ŷ is the projection of Y into Lcol (X)

• Questions

What if XTX is (nearly) singular?

Undesirable: small change in X or Y ⇒big change in β̂ and Ŷ

24.63.2 Ridge Regression

• Idea: Add constant on diag
(
XTX

)
β̂ridge =

(
XTX + λI

)−1
XTY

Ŷ ridge = Xβ̂ridge = X
(
XTX + λI

)−1
XTY

where λ is tuning parameter

• Bias -Variance trade-off (HW4)

β̂ridge is biasing towards 0, but has less variance.

MSE = bias2 + variance

β̂ridge can have smaller MSE to the true β* for some λ in the sweetspot



• Choice of λ: cross−validation

• Connection to noise−injected data

What if feature data has nolse injected ?(noise in X)

– data contamination

– survey data inaccuracy

– privacy (researcher add noise intentionally )

Define,

β̂OLS =
(
X̃T X̃

)−1

X̃TY

=
(

1
n (X + Z)

T
(X + Z)

)−1
1
n (X + Z)

T
Y =

(
1
nX

TX + 1
nZ

TZ + 1
nX

TZ + 1
nZ

TX
)−1 ( 1

nX
TY + 1

nZ
TY
)

≈
(
1
nX

TX + σ2
ZI
) (

1
nX

TY
)
=
(
XTX + nσ2

ZI
) (
XTY

)
In real-world big data, X almost always have noise ⇒ implicit ridge penalty is applied.
Many ML tricks involving noise injection in training (stochastic GD dropout layer) which the model

robust can be though of as implicit regularization.
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26.64 (From previous lecture) Summary of Gaussian Process

Gaussian Process is appealing because it:

1. Quantify uncertainty, which includes

• Intrinsic noise

• Errors in parameter estimation

2. Non-parametric regression: can model any arbitrary functions

3. Introduce kernels into regression:

• GP = Ridge Regression + kernel base

4. Simple and straightforward linear algebra implementations.

Downside: computational complexity (for K−1)

26.65 LASSO (Least Absolute Shrinkage and Selection Operator)

26.65.1 Key Feature

LASSO scales well with number of parameters p:

• statistical error

• computational cost

26.65.2 Setup

• Feature matrix: X is standardized so that column mean is 0 and variance is 1, i.e.,
∑n
i=1Xij = 0,

1

n

∑n
i=1X

2
ij = 1, for j = 1, . . . , p

• Response: Y ,
∑n
i=1 Yi = 0
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26.65.3 Loss Function

β̂Lλ = argminβQλ(β), where Qλ(β) =
1

2n
||Y −Xβ||22 + λ||β||1

Dual form:

argmin
1

2n
||Y −Xβ||22

s.t. ||β||1 ≤ t, for some t

The L2 loss function is more like a ellipse, where the L1 ball has corners, where most components are exactly
zero, which means LASSO will give sparse solutions.

The loss functions is in red curve and the constraint is in blue. The constraint in each quadrant is a linear
function, and formulate a diamond shape. The area of blue diamond is {β : ||β||1 ≤ t}. β̂ is the unconstrained
optimum, where β̃ is the constrained optimum which gives β1 = 0.

26.65.3.1 Sparse Solutions

Any form {β :
∑p
j=1 |βj |q ≤ t} for q ≤ 1 will have corners. When q ≥ 1, then corner points will become

smooth. q = 1 is the only convex constraint set.

26.65.4 Convex Optimization (Revisited)

Given a optimization problem
argmin f(x)

s.t. gi(x) ≤ 0, hj(x) = 0

The KKT conditions for the Lagrange function L(x, λ, v) = f(x) +
∑
i λigi(x) +

∑
j vjhj(x) is

1. 0 = ∇xL(x, λ, v)

2. λigi(x) = 0

3. gi(x) ≤ 0, λi ≥ 0, hj(x) = 0

KKT conditions cannot directly be applied to LASSO, we need to introduce the subgradient

f(y) ≥ f(x) +∇f(x)T (y − x)
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26.65.4.1 Subgradient

∂f(x) = {v : ∀y, f(y) ≥ f(x) + vT (y − x)}

if f is differentiable at x, then ∂f(x) = {∇f(x)}.
x∗ = argminf(x) ⇐⇒ ∀y, f(y) ≥ f(x∗) ⇐⇒ f(y) ≥ f(x∗) + 0(y − x) ⇐⇒ 0 ∈ ∂f(x∗). Then KKT(1) now
becomes 0 ∈ ∂xL(x, λ, v).
Back to the loss fucntion of LASSO:

Qλ : Qλ(β) =
1

2n
||Y −Xβ||22 + λ||β||1

The subdifferential of the L1 norm is

∂||x||1 = {v ∈ Rp : ||v||∞ ≤ 1, vs(x) = sgn(xs(x))}

where s(x) = {j ∈ {1, . . . , p};xj ̸= 0} The subdifferential of the Qλ at some vector β ∈ Rp is

∂Qλ = { 1
n
XT (Y −XTβ) + λv : v ∈ ∂||β||1}

i.e. for j = 1, . . . , p, vj = sgn(βj) if βj ̸= 0 otherwise vj ∈ [−1, 1].
Then KKT(1) becomes:

0 ∈ ∂Qλ(β̂Lλ )⇐⇒ ∃v̂ s.t. v̂j = sgn(β̂Lλ,j) if β̂
L
λ,j ̸= 0, and v̂j ∈ [−1, 1], otherwise

s.t.
1

n
XT (Y −XT β̂Lλ ) = λv̂

This is referred as the KKT condition for the LASSO.


