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1.1 Vector Space (Linear Space)

1. Euclidean Space

In Euclidean space R?, given a vector « = (z1,22,...,2p) € R?, y = (y1,92,...,yp) € RP, the vector
operations are defined as
r+y=(T1+ Yy, T2+ Y2, Tp+ Yp)

c-x = (cx1,cx2,...,CTp)

2. Inner Product

The inner product of two vectors is defined as
<xy >a=al Ay,
where A is symmetric and positive definite. The norm of vectors
l2][a = V<@, 2 >4 = VaT Az

Examples: 1. A =I; 2. A=Y (covariance matrix); 3. A = X1

3. Angle between vectors:

<zy>

COS(x = —
@) = Tl

Cauchy-Schwartz inequality:
| <zy>[<|lz[| -yl

4. Column space of a matrix:

Given a matrix Vpxq = (v1,v2,...,0,), the column space is defined as
q
Log(V)={w: w= Z%‘Ci} ={w=Vc¢}
i=1

5. Orthogonal basis:

Assume vy, v, . . ., v4 are linearly independent, then we can always find an orthogonal set (y1, 72, -+, 7q)s Vi €
RP, s.t. V=TCyxq, where C is invertible.
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6. Orthogonal space (null space):

LEV)={w:<w,v;>=0,i=1,2,...,¢} = {w:<w,v >=0, Yv € Lo(V)}

col

For Euclidean space, Ej;)l (V) = {w: wTV =0}.

Theorem 1.1 Let Xy, = (21,...,2.), then Lo (X) = Leo(XXT).

Proof:
(1) £COl(XXT) g ECOZ(X)
(2) ‘Ccol(X) c ‘Ccol(XXT) =4 ;Ci)l(XXT) - ,Cl (X)

col

For Vw € L1, (XXT), wTzz? =0 = wlzaTw =0= wlz =0.

col

1.2 Rank of a Matrix
Definition 1.2 rank(X,x,) = dim L.,(X)
Facts:
(1) rank(X)=rank(X7T)
(2) Suppose Bpxp, Cyxq are both nonsingular, then rank(BXC)=rank(X).

(3) rank(X XT)=rank(X)=rank(X7T X)
vl
Remark: Let X = |, then G = XX7T = (v]v;); is called ”Gram Matrix”.

T
Yp

1.3 Random Vectors

Given probability space £2(Q, F,P), z;,z; € L? (square integrable), E[|z;z;]] < oo, z =

e Covariance matrix: ¥ = Cov(z, 2) & X;; = 0,5 = Cov(z;, zj).

Linear functions: z € R?, X =272 =" 2,2,

Z1

1-2

e Inner product: < X,Y >= Cov(X,)) = 273y, where X = 272,Y = yT2, and z,y are constant

vectors.

Recall that: 1. Cov(az1,22) = a Cov(z1,22); 2. Cov(z1 + 29, 23) = Cov(z1, 23) + Cov(za, 23)

Length: ||[X|| = /< X, X > =VaT¥z



. — -1/ <X, Y>
e Angle: ayy = cos (W)

Remark: z takes value in RP | it is possible that z takes value in a subspace of RP.

Example: Suppose z ~ multinomial(n,7)/n, z; € [0,1], and ©# = (m,...,7,) is the probability, i.e.
7T1—|—...—|—7Tp:1.
1. What is the ¥ of 27

2. 1€ LE,(D).

col
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2.4 Projection

Suppose Vy,xp = (111,112, ...,0p) is of rank p < n. For Yy € R™, we want to decompose y into y = § + yt,

where § € Leo(V),yt € LL,(V).

p
= =Zm,ﬂew

VIiy=vTj+ vyt VTA =VIVE=g=v"TV) vy
which is the linear regression estimator.
§=VB=V(VTV)"VTy=Py
we call P = V(VTV)~1VT projection matrix.

yr=y—g=(I—-Py=P-=1-P

Hence P is the projection matrix into L.o1(V), P+ is the projection matrix into Lo (

Properties of projection matrix:
(1) P and Pl are symmetric;

(ii) P .P=P;

(iii) col( ):Ecol(v)§

(iv) rank(P)=p, rank(P+)=n-p;

(v) g7 l—0<:><yy >=0;

50) 11 = 57 Py, T = o7 Py = Il = 91 + ™
(
(

2 T
vii) cos®(ay ) = HZHQ =Lt Zy, ay g =min{ay , :Vw € Loy (V)}.

viii) Eigenvalues of P are either 0 or 1.

V).

—Geometrical intuition: An eigenvector of projection matrix, with nonzero eigenvalue, is in the column space
of this projection matrix both before and after the transformation. The projection matrix P project every
vector into ECOZ(P) The only vectors that are still in their original column space after being projected into
Leoi(P) are those which are already in Lo (P P, with eigenvalue = 1 since their lengths do not change For

vectors in L.y (P J-) are also the eigenvectors of P since after projection they become a dot in L., (P

eigenvalue = 0. X
In other words, if w € Lo (P ) then Pw=w. Ifw € Ecol( 1) then Pw = 0.
~Mathematical proof: Note that P2 = P and therefore Vv:

Ay =POw)=PPv)=Pv= =X = =>\=0 or 1

(ix) Vixp = (v1,v2,...,v5), T = (71,72, ...,7n) Where ; are all orthogonal to each other with L. (V)

1), with

Leoi(T) Porjection matrix is P = V(VTV)"'VT =I'TT. Also when p < n we have I'TT # I.
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_ e La(Y)

o f = (T)
a7 g
, )

v
) //7 ( . ( (/L l
( o9, )/Z

2.5 Projection matrix in a general metric
We define (y,v)4 =y " Av. Vector y can be written as y = § 4+ y*. Then § can be written as § = VB.
(y,0) = (§,0) + (", 0) = (G0) > VI Ay =VTAVE = = (VTAV) VT 4y

Thus we get, R
§=VB=VVTAV)'WVT Ay = V(V.V)"{(V.y)

Exercise: Verify the Pythagorean theorem:

lyl1* = 11g11* + [y~ 112

2.6 Linear Prediction

Assume Y to be a random variable and V = (V4,V5,..., V) where v; is a random variable. Assume that
E[Y] = E[V;] =0. Define (X,Y) = cov(X,Y).

How to find a linear prediction of of (V4, Vs, ..., V},) such that best predict V?

”Best”: norm of residual is smallest = variance of residual is smallest, i.e., Y should be the projection of Y
on V.

According to the conclusion in Section 1.7,

Y =V(V,V)"YV,Y) = Voprovy

Properties of Linear Prediction:

1. Y, Y is uncorrelated since (Y, Y+) = 0 (The reverse direction is true as well).

2. Var(}}) = <}>,Y> = O’yvO";‘l/Cfvy.
Proof: Y = BV where § = O'yvO";‘l/.
Then, Var(Y) = Var(8V) = BVar(V)37 = oyvoyyVar(V)oy i ovy = oyvopyovy
Subsequently, Var(Y+) = Var(Y) — Var(Y) = oyy — OYV O L OVY

3. Var(Y1) = mingegs Var(Y — V3)

4 Var(Y) _ oyvopuovy

* Var(Y) oYy
(v1,v2, ..., Up).

= ¥ v,,..v, = B2 R? is the multiple correlation coefficient between Y and
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2.7 Gram-Schimdt Orthogonalization

Vaxp = (v1,02,...,vy), denote: Vj = (v1,v2,...,v;) and P; = Vj(VjTVj)_l\/j—r
Algorithm:

o Let Wy = V1 /||V4]]
o Vit = (I = PV, Wa = ViV

o Vit =(I—Pia)V;, Wi = ViH/|[ViH]

o Vi=(I-P 1)V, W, =VH/[|[VH|

/V

Let’s change the direction of expression
o V1 =U W
o Vo =UnnWi + UnWs

[ ] VZD = Ulle + + Uppr
V = WU = QR Decomposition, where WIW = Ip,, Upxp upper triangle

2.8 Gram Matrix and Projection

Gram matrix: G;; = (z;, z;)
Assume

vifvy VIV G G
B org (Vi ViV 11 12
Vax(pi4p2) = (V1 V2), G=VV= (V2TV1 VQTVZ) a <G21 G22>

Let’s consider the projection of V5 to V3
P =WVi(VIVi) TV = G VT Pt=1-P
Vo= P\Vo =WVGH VIV =ViG'G1a Vit = PiVs
Then,
Gao = Vi'Va = (Va + Vi )T (Va + V5') = Vil Vo + (VE)TVEE = (V3, Vo) + (Vi V')
VEVa = (Vo = V)TV = ViV = Vi PV = VEVIGH VTV, = Gon Gy Gl
(Vi) TVt = Gaz — GGy Gz



2.8.1 Application to Linear Predictions

Assume E[Y;] = E[Y2] = 0, dim(Y1) = p; and dim(Y2) = po, and we want to use Y7 (a group of random
variables) to predict Y3 (another group of random variables):

Y1 Y1 Y Y Y11 Y2
E: 5 :C s =
()G e () () = (2 22,0

Yo =SSV, Yii=Yo-Y,
Vg = Cov(Ysh) = Bgy — EngﬁlElg, partial covariance matrix of Y5 after linear regression on Y;
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3.9 Determinants

Definition 3.3 Given a square matric Apxp = | a1 -+ ap |, the determinant of A is

det(A) = |A| = ZSQH(W)AM(UA%@) o Apr(p)
where 7 denotes all possible permutations.

3.9.1 Properties of determinants

1. For any upper triangular matrix Upxp, |Upxp| = [1iey i

2. |AT] = 4|

3. la1 ax -+ c-a; - ap| =clAl, |cA] = P|4]

4. lay az -+ a; -+ a; --- ap| =—|A|, where i < j, swap a; and q;

5_ aj e ai+aj e aj - ap:|A‘

6. |ApxpBpxp| = |A||B| = |A7Y = ﬁ; if A is an orthogonal matrix, ATA =1 = |A| = &1
7. |Apxp| = 0 if and only if rank(A) < p

*®

‘AM O 1 =141 D)

qup Dqu
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9. ’Apxp Bpxq — D] -4~ BD710|7 if rank(D) = q
Coxp  Daxq |A|-|D — CA™'B|, if rank(A) = p
Proof:

A B\ (A-BD'C B\( I, 0
C D)~ 0 p)\p-lCc I,

|
10. |Ip + ApxgBgxpl =|1q + BgxpApxl
Proof: Apply property 9 to
‘ Ip _Aqu
Byxp I
|
(Exercise)
I p p
p 1 p
. J=0=p)" 14 (n—1)p]
p p DY 1

3.9.2 Geometric Interpretation of Determinant

Recall

det(A) =4, A=|ai az - ap

pXp

Geometric meaning:
|det(A)| = p-dimensional volume of the parallelogram consisting of {ai,ds,--- ,dp}

Example: Consider

. . 9 _1
A= ay asg :(1 1)

1A =3

The change in volume is shown in Figure 3.1.

QR Decomposition:

A = WU, where W is orthogonal basis, U is upper triangular.

p
Al = [W||[U| = £|U| = £ ] ] s
=1
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Figure 3.1: det(A) =3

Figure 3.2: |ay, az| = |a1, a1 + as9|
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Example. Vai,as € R?, la1,as] = a1, a1 + as|. Geometric interpretation as shown in Figure 3.2: Red
Area = Blue Area.

3.10 Jacobian

Motivation for Jacobian: Suppose random variable X has density function f(z). X = m(X), where m is a
1-1 map from R™ — R™. What’s the density function f(x) for X ?

Definition 3.4 Suppose X = m(X), where m is a 1-1 map from R™ — R™.

0= (3,

= (3),

J(X = X) = |det(MH(X))| = ‘def(gg)’

Jacobian

Then, for our problem in random variable

F&) = f(x)- J(X = X)

3.10.1 Intuitive Sense: why use Jacobian (determinant)?

Example. Consider n = 2 as shown in Figure 3.3, where

e1=(1,0) é=1(0,1)
dx = (dzy1,dzs)
L o5, o5
M = (My, My) = <2 23)
Oz Oxo

M(x+ éidx1) = X+ Midz, + o(dz1) by Taylor Expansion

Vol(A) = det | Midz, Mydx, :<dei>~|det(M)|
. . =1

Probability mass:

f(x)Vol(A) = f(x)Vol(A)

= J60 = 109 740

Vol(A) = det(Mydzxy, Madzs) = (II7_dx;) - |det(M)| = Vol(A) - |det(M)]

= (%) = f(x) - o

Tdet(aD)| = f(x) - det(M™)
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xi A

Figure 3.3: n=2

-?_t) t €, d)(z

(=]

m m m
X+ M X;” -7
'/’
X+ Mol x,
X = (%, %)

~
> X
>

I
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Example. 1-d space (n-d space):

[ F@az - / f(@)lda

& [(@)|dz| = f(x)|dz|
N L

Classical Example. Polar system.

Figure 3.4: Polar coordinates

e;10, 0,1

g.z=lo.0)

€:(0.1,0)

Figure 3.5: Polar to Cartesian
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x1 = pcosb

Lo = psinfycoshs

Tp—1 = psiné; cosbs---sinfb,_1 cosb,_1

Ty = psinby ---sinf,_q
where p >0, 0<6;, <m, 0,_1 €[0,27].

Calculate: J(X — (p, 01,02, ...,0,_1)) = p"~ ! Sin™ 26, sin" 30y -sinb,_o
Proof: Math induction on J, = psin™ 2 6J,_4 [ |

3.11 Integral Jacobian: X — X

Example (Motivation) X, Xo, ..., X, i f(x), what is the density of :
(D) z1+az2+ ...+,
(2) 22 +23+... +22
(3) Other many to one mapping

m

Definition 3.5 X = Y. We can find Ys , such that the mapping X — (Y1,Y2) is one-to-one. The integral
Jacobian of X — Y1 is defined as

J(X —Y) :/ J(X = (Y1,y2))dy2

Y2

Lemma 3.6

_ Vol(m™([y1, y1 + dy1]))
X—-Y)=1
J(X = 1) 30 Vol([yr, y1 + dy1])

Example. Suppose Y7 = m(X), X is 2-dimensional (n = 2), and Y} is scalar. (See Figure 3.6)

A= {1, 92) : 91 € [y1, 91 + dy1]}
A={z:m(z) €[y, 1 +dyl} =m ™ (A) & A=m(A)
Vol(A) .. Vol(m ([y1,y1 + di]))

Jacobian = lim — = lim
dy1—0 Vol(A)  dn—0  Vol([y1,y1 + dy1])

Lemma 3.7 Suppose X 5 Yy, X has density fX(z) = gom(z) = g(m(z)) = g(y1). Then the density
function of Y7 1is

) = gy) (X — 1)
Example. X1, X, ..., X, %' N(0,1), p= /X2 + ... + X2, what’s density of p?

Solution.
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Figure 3.6:

i=1
n
_ ( ) S
21
= (2#)_% e 3P

From lemma, we have

FP(p) = 2m)"2e 3" J(X = p)

Using polar system, we can show that

ﬂX%m:/ﬂX%@ﬂfW%AW%

2rm/2
I'(n/2)

n—1

So,

'rLflefép2

Py~ P ~
fPp) = 2T ()~

Proof: (of Lemma 3.7)

ceedByy
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Consider X — (2) such that it is one-to-one. By definition,

) =/fY1’Y2(y1,y2)dy2
:/fx(x)J(X%(ylvyz))dyz
_ / g(m(@)J(X = (y1,5))dys
- /g(yl)J(X — (y1,y2))dy2

— g(w) / (X 5 (g2, 92))dy
=g(y)J (X = ()

Remark: In one-to-one mapping of m,

) = A ) I (X = )

Trick: Reverse Lemma 3.7 to find Jacobian.

J(X 5V = {;(él))

provided that fX(z) = g(y1).
Example. X = (X1, Xo,...,X,,), m: (R")" - R" maps X to S =Y., X;, . What is J(X — S)?

Solution. Reverse Lemma 3.7. Consider X, X5, ..., X, i exp(l), f(x) = e ®. Then, S = X; + Xo +
CF Xy, ~T(n,1).

1

F5(s) = () st les
fX(x) = H?:le_zi =e YT oS
_ ) s
J(X —98) = () T

Lemma 3.8 Chain rule of Integral Jacobian. If X '5' (Y1,Y2), Y = (Z1,%Z3), then J(X — Z1) =
JX =Y - IV = Z).
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Proof: Consider X =" (Z1,Z2,Ys). Using definition,

I o 20) = [ [ I8 (2122,
I 2) = [0 ()
J(Yl — Zl) = /J(Yl — (Zl,ZQ))dZQ
J(X — Yl) . J(Y1 — Zl> = //J(X — (Yl,yQ)J(Yl — (21722))d22dy2

// J(X = (Z1, 22, y2))dz2dya

where the second last equality is using standard chain rule for Jacobian.
Remark: We can also use Lemma 3.6 with the intuition that as dz; — 0, dy; — 0.

J(X = Z1) = lim Vol(B) ~ lim Vol({l) im Vol(B)
2120 Vol(A) w10 Vol(A) 210 Vol(A)

|
Lemma 3.9 (Hsu’s Lemma) X,y — Spxp = XTX.
%_é-‘r% n—p+1
J(X = 8)= - ) |det(S)]
7j=1 ( 2 )
Proof: Use the trick of inverting Lemma 3.7. ]

3.12 Spectral Decomposition (Eigendecomposition)
Suppose A,y is a real-valued, symmetric with rank K. Then A can always be decomposed as

Apxp = Tpx kAng;z

where ' = |r; 7o ... rg| is orthogonal matrix 7T = I,

A =diag(A1, Mg, -+ Ak), where \; #0(i =1,2,--- k)
We can find Eigenvalues ()\;) and Eigenvectors (p; ) as follows.
AT = (TATTT =TA < Ap; = \ip;i

, where i = 1,2, --- k. Also, we can know L.y (A4) = Leoi(T)
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3.13 Trace of matrix

Trace of p x p matrix B is defined as

Based on the definition of the trace matrix, we can swap the order of matrix multiplication as below.

tr(ApxgBgxp) = tr(BgxpApxq) = Z ZAiiji
J

i

Suppose A is symmetric, we can calculate the spectral sum by using the trace property
k
tr(A) = tr(PATT) = tr(TTTA) = tr(A) = >\

Special case: Suppose P,y is a projection matrix into k — dim linear space. (tr(P) = k)
1. k-dimensional linear space = L., (X)
P=XXTXx)'xT
QR decomposition on X, where X = I',» U

P =TT7 — tr(P) = tr(ITT) = tr(T'T) = tr(I}) = k

2. P must have eigenvalues 0 or 1

3.14 Matrix square root

Let S%2 = A, where A is positive semi-definite.

(1) Symmetric square root: Suppose A, is symmetric positive semi-definite and rank(A) = k, then
the solution to S? = A4 is

1. Spxp = TA:TT, where A2 = diag(v/ A1, Vo,V ) or
2. Spxp = A3TT

We have STS = I'AT'" = A in both case. We can see S and A share eigenvectors and also have close

relationship as for eigenvalues %

(2) Upper triangular square root: UTU = Ay,
e S=A:I'T = WU, where W is orthogonal
e A=STS=UTWTWU =UTU



3.15 Singular Value Decomposition (SVD)

While spectral decomposition can be used only for square matrix, SVD can be used for any matrix.

For any Ay, with rank k, A,yx, = nkakkak,j;p, where Upxk, Vpxk are orthogonal (< UTu =
I, VTV = I) and D = diag(dy,ds---dy,), where d; > 0. Furthermore, we can arrange them such that
dy > dy > ---dy. Here, dy - - - dj, are singular values, U = (u; - ug)nxx components are left singular vectors,
V = (v1 - v)pxk components are right singular vectors.

U and V are not unique (—U), (—=V). So you can put a sign in any column of U and V

(AAT) s = (UD*UT) s and (AT A)pyp = (VD?VT),xp. Then we have d? to be the eigenvalues of
AT A or AAT, which also explains that eigenvectors of AT A or AAT should be columns of U and V.

Proof: Let AA” is symmetric positive semi-definite. Spectral decomposition gives AAT = UAUT. Let
D =A% and VT = D-'UT A. Now we show U, D, V satisty the requirements.

1. U is orthogonal
2. D is orthogonal
3. We have to check V' is orthogonal.
Vv = D luTAATUD ! = 1,
4. A=UDVT =UDDTUTA=UUTA=A
UUT is the projection matrix onto Lo (U) < Leo(U) = Leot(AAT) = Lo (A). Then, UUTA = A.

3-12
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5.16 Matrix Theory Review (continued)

5.16.1 Pseudo-inverse X~ (continued)
Pseudo-inverse can be applied to solving linear systems
n=Xg

where it assumes 7 € L.o;(X).

Claim: By = X ™7 is a solution.

Verify: X8y = XX ™1 =n because XX~ is the projection matrix into L..;(X).

* Exercise (in the case n < p): in the case of multiple solutions, fy is the shortest solution in terms of the
length ||3]].

* What if X8 ~y,y ¢ Leoi(X),n >> p. (consider linear regression)

B=X"y=(X"X)"XTy,
then X3 = XX~y = Py = § is projection of y into Leot(X).

5.16.2 Orthogonal Representation of X
Suppose X has the following SVD decomposition

dy vy
X=UDV" = (ug, - ,uk) ]
dg v,;r
where
Unxk = (u1,ug, - ,ug),u; € R™
Voxk = (v1,v2, -+ ,v),v; € RP,
D = diag(dy,ds, -+ ,dg),d1 > do >+ >dy >0,
k = rank(X).
Then

k
X = Zujdjvj .
=1

Let B; = ujv] . B; is (n x p) matrix, rank(B;) = 1. We have

J
k
X =) d;B;.
j=1
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e Bj are orthogonal to each other, and ||B;|| = 1.
Proof: Vi # j,< B;, B; >=0

0,if i # j,

& Z(Bi)lm(Bj)lm =tr(B; Bj) = tr(viujujv;) = tr(ujujvavi) = {1 iz
l,m ’ ’

5-2

Define X (J) = ijl d;B;,J <k, rank(X(J)) = J. X(J) is an approximation to X with the following

properties:

LIX = X2 =Xk, d%

X—X(D|2 Sk, d?
2. 1 ||X|(|2)H ==& jtﬁj (percentage).
J= J

Example: X, xp, k= p but X (p — 1) approximates X very well, then X has multi-collinearity.

5.16.3 Block matrix inversion

Consider block matrix
1,, A2

A — PXq s
(p+a)x (p+a) (Agqup A22qxq)

where Ai1, Aso are invertible, then we have

A1 = (Aul + A Ara(Aog — Ag1 AT Ar) T A AT A Ara(Age — A21A111A12)_1)
*A2_21A21(A11 - A12A2_21A21)71 (A2 — A21A1_11A12)71

5.16.3.1 Woodbury’s formula

Suppose Apxp, Bgxq are both non-singular, then

(Apsp + UpsgBaxgVaxp) "= A — AT UB + VA~ U) VAL

(5 -

Proof: Assume we are trying compute

We can do a column elimination first and then a row elimination to make the matrix diagonal. Specifically,

by column operation:

I 0\(A U\ (A U
—vat 1)\v B) \o B-vaU)
A U\ (I —A"U\ (A 0
v BJ\o 1 )~ \v B-vaU)
I 0\(A U\ /(I -A'U\ (A 0
—vat 1)J\v BJ\o 1 )7 \0o B-vaAU

(AU T (AT 4 ATWU(B-VATWU)TWATY —ATWU(B - VA~IU)! W
v B) —(B-VA-\U)"'vA! (B-VA-lU)-! '

On the other hand, we can also do row elimination first and then column elimination. It follows that

A U\ _ (I UBY[(A-UB'V 0 I 0
v B) \o I 0 B)\B'V 0

By row operation:

Then it follows
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(AU - (A—UB~'V)~! —(A—UB~'V)~'UB"! @
Vv B) “\-BWA-UB'W)"! Bl'4+BWA-UB W) 'VB )"

Note that the right-hand-side of (1) and (2) should be equal. The equality of left-upper block gives Wood-
bury’s formula. ]
For special case when ¢ = 1:

A"y TA-L

A e
(A+507) b+ VIAT

5.16.3.2 Statistical application of block matrix inversion

([ Xy _ (B Y
X_<X2>,E_Var(X)_(221 222).

Using block matrix inversion, we have

Consider

(D)2 = (S22 — S B T12) 7 = (S) 7,

where the right-hand-side represents the conditional variance of X5 conditioning on Xj.
* Exercise: it is known that ¥;; = 0 < Cov(X;, X;) = 0. Show that (X7!);; = 0 & X;, X; have partial
correlation of 0 after projecting on X1, ..., Xj—1, Xiy1, ..., Xj_1, Xj41, ..., Xp.

5.17 Multivariate Normal (Gaussian) Distribution

5.17.1 Standard normal
Random vector Z following standard normal distribution is denoted as:

Z~ Ny (0,1) & Z = (21,...,2) 2 % N(0,1).

Density function is:
1
_p
fz(@) = 2m)" 2 exp{—3|lzlI*}.
Characteristic function is:
Uy(t) = B(e 2) = e 31" = =307,
5.17.2 General normal (Gaussian)

For any ;1 € RP, and symmetric positive semi-definite matrix X, ,, a random vector following general normal

distribution can be constructed as )
X=u+3%3Z ~ Np(ps, X).

The following are some properties of general normal distribution:
1. BE(X)=pu,Cov(X,X)=2X.

2. If rank(X) = p (full rank), then X is positive definite, and density exists:
_r 1 _ _1
Fx(@) = f2(2)J(Z = X) = (2m) 7% exp{— (2 — 1) " 37" (2 — ) }{det()| 2.

3. Characteristic function: )
Ux(x) = E[e”‘TX] = exp{it' pu — itTEt}.



. For any p € RP, %, > 0 being symmetric, there is a unique Np(u, X) distribution.
. X € p+ L:o(X) with probability 1, since ,cwl(z—%) =Leo(X).

. Let Y =7, + AyxpXpx1. Then Y ~ N, (r + Ap, ALAT).

. Skewness is always 0. For X = (z1,...,2p) ~ Np(p, ),

E((z; — pi) (@ — py)(zr — pr)) = 0, Vi, 5, k.

Kurtosis is
E((x1 — p1)(xe — po)(xs — p3) (x4 — pta)) = 012034 + 013024 + 014023.

. Take =0, Y:=Tasa p X p orthogonal matrix, then X =T'Z ~ N,(0, I,,).
— Standard normal is rotationally (spherically) invariant.

. Let U = Z/||Z||. U is uniformly distributed on the surface of a p-dimensional sphere.
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6.18 Multivariate Normal Distribution

Properties (cont.)

9. U = Z/||Z]| is uniform on a sphere. This is a way to simulate a uniform distribution on a sphere.

X ix) (Sxx Sxy
10. P~ . XN 5
(Yq> P ( <MY) ’ <EYX ZYY)> p(kx, Yxx)

A marginal distribution of a sub-vector is still multivariate Gaussian.

11. ¥xy =0 <— X 1L Y
Proof: 1/J(X7y)(t, 5) = wX (t)d}Y(S)

12. Conditional distribution, ¥'|X ~ Nq(uy + Syx Sk (X — ix), vy — Sy xExx Zxy)
Proof: Y =Y + Y+ (projection on £(X))
Yyix () = B[ Y| X] = Ele" THX] = Y Bl X]
Cov(Y1X) =0 < Y' I X = & VE[e" Y |X] = et VE[ V]
13. E[Y|X] is the best linear predictor of Y in terms of X and the best predictor of Y in terms of X.

This holds for any conditional expectation. In the Gaussian case, the best linear prediction is the best

prediction. . R
Proof: Recall Y =Y + YL, The best linear predictor is Y = AX such that Var(Y1) is minimized.
The best predictor is Y = f(X) such that Var(Y*) is minimized.

ElY|X] = EY+Y4|X] = f(X)+E[Y | X] A Var(Yt) = E[Var(Y* | X)|+Var(E[Y 1 X]) = f(X) = E[Y|X]

Repeated Sampling

Now, instead of looking at just one sample, lets look at n independent and identically distributed p-

dimensional random vectors: N
Xi, ooy X~ N (1, B).

We assume X is full rank, i.e. it is positive definite. we can collect all the random vectors as columns, and
we get a random matrix:

Xpxn = | X1 X2 ... X,

We can find the joint distribution using independence:

n

expl—g DX = )T (X = )

1
fo) %) = rampEn®
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< Smpl; < T i Xi
Let us simplify the exponent of e using sample mean X = ===,

n

X=X — )

=1

= Tf(Z(Xi = X)TETH X = X))+ n(X = p)TETHX - p)

— TS Y (X - X)X - D)T) + (X - 0TS E -~ p)

=Tr(Z71S) + n(X — )" 27X — p),

where § = Y77 | (X;—X)(X;—X)7 is the sample covariance matrix. Thus we can write the joint distribution
in terms of the sample mean X and sample covariance matrix S,

((27T)i|2 exp(Tr(Z718) + n(X — ) TS (X — p)).

)2
(X, S) is a sufficient statistic (complete sufficient).

Multivariate Gaussian distribution is a special case of the exponential family, whose distribution is of the
form

f(u,E) (X> =

k
£(2,6) = exp(3_ m(O)T(@) — ¥(0)) h(2)

where & can be either a vector or a matrix, and {7;(k)} are complete sufficient.

6.19 Matrix Manipulation

Vectorization

ai
Do . ay
A=|a1 a2 ... q = vec(A) =

nxp ap npx1

With this definition, we can define other things like matrix norm, inner product, and orthogonality
between matrices.

IAI* = floec(A)||* = tr(ATA)
(A, B) = (vec(A),vec(B)) = tr(ATB)

This leads us to a natural way to manipulate random matrix X,.,, where X; i Np(p,x) for all ¢ €

{1,...,n}.
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X1
: : : X,
Xpxn=|X1 X2 ... X))| = vee(X)=] .
Xn pnx1
vec(X) ~ Npp(u*, X*) such that:
I
. H
pr=1
H (pn)x1
2 Cov(X1,X5)=0 ... Cov(X;,X3)=0 Cov(X1,X,)=0
Cov(X2,X1) =0 by . Cov(X2,X3)=0 Cov(X2,X,) =0
D — : . . .
Cov(X,-1,X1)=0 Cov(X,_1,X2)=0 . ) Cov(X,-1,X,) =0
Cov(X,,X1)=0 Cov(X,,X2)=0 ... Cov(X,,Xpn-1)=0 z
=diag(2,%,...0) =1, %
Kronecker Product
The definition of a Kronecker product is as follows:
auB CLlQB e aqu
ang ang N aqu
Apzq ® Brms = .
ap1B  apeB ... apeB (o) % (g5)

The Kronecker product has the following properties:
1. A B)@C=A® (B ()
2. (Ao B)T = (AT @ BT)
3. (A® B)"! = A=l ® B7Lif A, B invertible
4. (A® B)(C® D)= (AC® BD)
5. tr(A® B) = tr(A)tr(B)
6. vec(AXB) = (BT ®@ A)vec(X)
Returning to the repeated sampling setup, we see when
X1, X ~N(p, %),

and

prn = X1 X2 e Xn 3

and - 17 = (p p---p), we have
Xpsn ~ Npsn (- 17,1, @ 2).



Generalization of (i.i.d.) Normal Data Matrix

We now consider

Xpxn=| X1 Xo ... X, |;

where X1, ..., X,, ~ N(u,X), i.e. they are identically distributed but not independent. Under the indepen-
dence assumption, we have

Cov(Xiy g1, Xinin) = Zirialjijo-
In the dependent case we will have
Cov(Xiy g1, Xivin) = Ziria i jas
for some symmetric positive definite matrix A.
o Cov(X;, 5,, X5, 5.) = Xiy,inNjy 4, for 3, A symmetric and ¥ > 0, A > 0.
o Cov(Xe;)=Cov((Xy;, -, X)) =24,
e Cov(Xie)=Cov((Xi1, -+, Xin)) =5, A

6-4
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7.20 Repeated Sampling (continued)

Now we consider X = (X7, Xo, -+, X,,) with X7, X5, -+, X,, are identically distributed but not independent.
E.g.: stationary time series X7, X5, -+, X; with each vector marginally following same distribution, vector
Auto Regressive (VAR) Model.

Then assume X,y ~ Npxn(t, A @ X), where p; ; = E(X; ;) is a matrix, Cov(vec(X)) = A®@ X

7.20.1 Properties of Generalised Gaussian Matrix
o X'~ Npsip(u', 2@ A).
o If Xpxn ~ Nyxn (11, A ® %), then AgwpXpunBuxm ~ N(AuB, (BT AB) ® (ASAT)).
Proof: vec(AXB) = (BT ® A) - vec(X), then
Cov(vec(AXB)) = Cov((BT @ A) - vec(X))
= (BT ® A)Cov(vec(X))(BT @ A)T

= (BT @ A)(AeX)(Ba AT) (1)
= (BTAB) ® (AXAT).
to remember intuition, think special case with n =p = 1. |
e Suppose X, A have spectral decomposition
Y =T1D:TT, A =TyD,T¥ (7.2)
with rank(X) = kq, rank(A) = ko. Then we can take
X = p+I1D)*ZDY*TT (7.3)

then Zy, xk, ~ N(0, I, ® I, )(iid standard normal in all entries of matrix), which is equivalent to
X~ Npsn(p, A R X).

Consider Xpxp, ~ Npxn (0,1, ®%) <= X = (X3, X, -, X,,) with X1, Xs,---, X,, Np(0,X) follows iid.
X=X Xo- - X,
Let V = Xgm = (v1,v2,- -+ ,vp) and we have v; ~ N, (0, 0;1,).

—_xT _
V=X'=]vv--1



. Ul
. v%_‘ ..
X= .
~v§ .
where v1 can be taken as individual features like height, weight, age, etc.

Rotational in-variance of mean 0, Normal data matrix. I, is a full orthogonal matrix Moreover, let I';, ., be

a full orthogonal basis, then
Tw; ~ N, (0,047, TT) = N, (0,041,) ~ v;
and
XIT = (Txh)? = (V)T ~ N0, ITTT @ ¥) = N(0,I,, ® %)
7.21 Spherical Symmetry and t-test

Recall the univariate t-test -

X1, X, -+, X ~ N(u,0?) follows iid, Hy : pp = 0; Hy : p # 0

_
VX - X)2/(n - 1)

In geometry, 1,,x1 :7(1,717 e i)T Using projection onto 1,x1.
WehaveX:PlX:(g(,X7~-~,XA)nxl. R R

Moreover, Xt =X - X =(X; - X, Xo - X,---, X, — X) = (I — P))X, and
[
[ X+l

t=sgn(X)-vVn—1-

where H)A(H:HYY \/n = /n|X]|

Py (projection matrix onto lT) =1(171) 11T iraf

7-2

(7.4)

(7.5)
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8.22 Centering matrix

nx1
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A1
P; =—I,I7 . projection matrix onto £, (I,,)
n "
L) T

1
H,=1I,— ﬁI"IT Pl projection matrix onto £X, (I,,)

111---1
111---1
_ T _
Jp=1In1I, = 111---1
111---1
Therefore ,
Y =XH,

T r (11 1
prn~N<uIn,In®E ) MIH_(/IJ,7[11,’.../1L)
iid
prnNXHn ﬁxsz( E )
8.23 Properties of Y,

8.23.1 Distribution
Vipsn ~ Ny (0, Hu @Y

Hf[in H, =H,
— 1
Xy (3 3
% (17 I,1,) & >
1
)

S|

8.23.2 Y]] X only need uncorrelated
(K Y) =X <Hn7 1In>
n
N 1) 1 (1t ®Y
) ns n n n ny n n

_ 1
YHX@HWfL,,:O
¢1

IIT

8.23.3 YY" is independent of X

zn: ) (X, —-X)"

i=1

= THX

S

<.



8.23.4 Distribution of YY7

I,/\/n vector, wren of T
31 jx(n—1) is orthogonal basic of Ej; (I,)
Then I' = (T'y, I,,/y/n ) is full orthogonal basis
H,, projection matrix onto Ej (In) = I‘lI‘?
Z=XI'1 ~ pr(nfl (O,In,1 @ Z)
S=vYT =YH, YT =Y, ITYT = 227
227 = XD, ITXT = XH,, (HIXT) = yy7T
= YY7 has the same distribution of ZZ” where Z ~ Ny, (n—1) (0, I,-1 @ 3")

n—1 .
& YYT has the same distribution of S Z;Z7 where Z1, Zo, -+ Zn_1"% N, (3)
i=1

8.24 Wishart distribution

Consider Xpyxn, ~ N (0,1, ® )

Def. For X,xpn ~ N (0,1, ®3) ,5 = XX7 is said to have wishart distribution with scale matrix >,
and degree of freedom n

S~ WP (Z ’ n)

Pdf: f9(S)=fA(X)J(X—=9)

*Jacobian to Triangular coordinate = Barlett decomposition

JX=-8)=JX->T)J(T —2S)

T:(V)Vaxp= XTv= WispIpxp (QR decomp)
S=XXT=vTv=T1TT idea of proof
Then J(X—=8)=JX->T)J(J—S95)
Lemma 1 The integral Jacobian of X, ., — Tpxp
p ,
JX->T)=C - [t
i=1
N p 4
where C; = 2p7r7p’§+§/ [1T (2=
=1
Corollary : fT'(t)= f%*(z)- J(X = T)

Hint: Xpup ~ Npwn (0,1, ® I,) ¢ 5~ N (0,1)

8-3
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9.25 Integral Jacobian
Xpsn ~ N0, I,®%), S=XXT, V=XT=(v,v,..,0p)
Definition: S W,(X,A, V. = WT (QR decomposition). S =TT

Lemma 1: Integral Jacobian of Xjxp, — Tpxp is:

2
np_Pp_ 4P
4

p
J(X — T) =C1 thll_z, where c1 = QP% (99)
=1 j=1 ( 2 )

Proof: Idea X,x, ~ N(0,I, ® I,). Then if I find out the distribution of T, where X7 = U = WT.
X n
Then the J(X — T) = £ where fX(z) = (2r)~ % exp(—3 > 7).

()
Z x?j =tr(XXT)
ij

=tr(TTWTWT)
=tr(TTT)

=t
i

Thus, we can write:

£ (@) = @) exp(—3 Y 12)

Next find out distribution of ¢;;
XT =V = (1}1,1}2, ...,Up) =WT

Zi1
Zi2 .
v,=1| .|, each N(0,1) iid
Lin
By Gram-Schmidt orthogonalization:
v = tnws

V2 = t1owy + taows
vz = t13w1 + togws + t33ws

Vp = tlpwl + tzpwg 4+ 4 tppwp
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where t17 = [|v1]|, t12 =Projection of V5 to Wh,. .., etc.
Construction of W and T

2 = |lvy||? ~ 2, w:iv1
11 || 1” Xn 1 ||U1H
v
t19 =< w9,w; >~ N(0,1), wy = Projection of V5 onto LJ‘(Vl) = T i”
C5)
t22 = ||”2 ||2 ~ X72171»
v
t13 =< vz, w; >~ N(0,1), ws = Projection of V3 onto LL(Vl7 Vo) = T iH
U3

tog =< v3,wy >~ N(0,1),

t33 = ||7f3 ||2 ~ X%-za

tij ~ N(0,1)

tii ™~ Xn—i+1

tzzi ~ X?z—i+1
We have that:

3o = lloall® = | Val|* = VT Py Va = ||(D3) " Val 3
P- = (I3)(TH)T, Ty =is the orthogonal basis for L,(Vi, V3)
(P3) Vo ~ N1 (0, 1),

tie =< W1, Vo >= WiV,
V2 ~ N(O, In)
WIVy ~ N0, WIW,) = N(0,1)
Similarly, toz =< W, Va3 >= Wi V3
Va ~ N(0,1,)
W5 Vs ~ N(0, W5 W) = N(0,1)
cov(Wi Vs, WlVy) = E(W] I, W) =0

So, all of ¢;;’s are mutually independent, 7 < j, ¢;; is inner product onto orthogonal space = correlation
zero, = independence. t;; is the norm (HW: ||z|| L ﬁ)

tn ze 2t”
}:[1 2"= T ]11 \/ﬂ
T(t
JX —=>1T) j{XEx))
Xn (0,1) N(0,1) N(0,1)
Xn—1 N(Ovl) N(Ov]-)
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9.26 Bartlett Decomposition for General Wishart Matrix

S~ Wy(E,n)
Xpsn ~ Npsn (0,1, ®%) s.t. S =XXT
Xpxn =522 Z~N(0,I, x I,,)
S=x2777(x3)T

If we use ¥'/2 = LT Cholesky Decomposition

S = (@n)*" )™ wr)Twr) ="

Lemma 9.10 J(T — S)

Let T be upper triangular, S = T7T. Then we have an injective mapping

J(T — 8) = 2thp !

Intuition: Degrees of Freedom T, S : % Proof: HW3

9.26.1 Hsu’s Lemma

JX—=8)=JX—->T)J(T = 5)

=T |§petD)

Theorem 9.11 If > >0, then S > 0 w.p. 1 and has density

F5(6) = CalslE oxp { — Ger(s9) S|

2

p2 _p p _ —1
where Cy = {;ﬁw 4H n Z""l]
9.26.2 Properties of Wishart Distribution
(1) If S ~ W, (2, n), let Spy = AgxpSpxpAL,,. Then:

pPXq-
S ~ W, (AXAT n)
Proof:
S=xx"T
X ~N(0,I, ®%)
AX ~ N(0,1, ® AXAT)
= ASAT = AXXT AT = (AX)(AX)T ~ W, (AZAT n)
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(2) Let

Sl ~ Wp(27nl)
SQ ~ WP(Z,TLQ)
S1LSy=8+S5~ Wp(nl +n2)

Proof:

S; = X, X{ where X; ~ N(0,I,, ® %)
Sy = Xo XTI where Xy ~ N(0,1,, ® %)
S1 LS <— X; 1 X,
*.» Block matrix [Xl Xg} ~ N0, I 4n, ®)

X1

LS+ S =X Xo [Xg

] ~ Wp(zanl + n2)

(3) Let
prn ~ N(,prm I, ® Z)

Where Ty, is an orthogonal matrix in £ () i.e. uI' = 0. Then:

Tow

Ypsxm = XT' ~ Ny (I ,TTT @)
0 Iy,
S=YY" ~W,(Z,m)

(4) Let
X~ N, I @ %)

Where P is a projection matrix into m dimensional space that is a subspace of £ (1) i.e. uP =0
Then

Y :i=XP=YY?T ~W,(2,m)
Proof: Let ' be an orthogonal basis 'y, xm

p=1r7
YYT = xppx7T
=XPXxT
= XIrtx”
= (XT)(xT)"

where XT' ~ N(0,1,, ® X)

(5) Application to Centering

Consider the projection matrix onto £, (1,,)

1
H,=1,—-1,1F
n
and the matrix

X~ Nl ILe%) — X, YN,(1,%), i=1,2,...,n



Then

Y =XH,=(X,-X,...,X, - X)

n

S=YY" =3 (X; - X)(X; = X)" ~ W,(8,n - 1)

=1

9.27 Wishart distribution

Definition 9.12 Suppose X is a p X n matriz,each column of which is independently drawn from a p-variate
normal distribution with zero mean:
S=XXT=3",X;X! known as the scatter matriz.
One indicates that S has that probability distribution by writing:
S~Wy(V,n)
The positive integer n is the number of degrees of freedom.
T4

Theorem 9.13 Correlation coefficient: p;; =

Sample Correlation coefficient: R;j =
Dypxp = diag(y/Si),i=1,...,p

SO; R= D_lsD_l

df :R: 221 p.p g.r2ef)
Therefore, S — (D, R) is an one-to-one mapping.

Lemma 9.14 J(S — (D, R)) = 27|D? proof: S = DRD then calculate the derivative S;; = d; R;;d;

Theorem 9.15 The joint distribution of (D, R) is fs(s) - 2P|D|P

Corollary 9.16 If S ~ W,(X,n—1) then D is orthogonal to R with FR(R) = C4- |R)| neper D, i .
Proof: fs(s)-2°|DP = C5 - e~ 37(9)|S ===t op

Because we can have this separate expression, D is orthogonal to R

9-5
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10.28 Hotelling’s T? statistics

2.7

Definition 10.17 Univariate t-test: X1, Xs,..., X, i N(u,0%). Hy: pp=0,Hy :pp#0

t= \/HX_ = sgn(X) LX) vVn—1
Vi (X = X)2/n -1

Definition 10.18 Hotelling’s T? test: X1, Xa,..., Xp "% Ny(1,%). Ho:pp=0,Hy : p #0
S=>(Xi = X)(X; - X)" = XX - nXX"
=1

The T? test statistics: g

2 _ T
rm=x (n(n—l)

)X
The Hotelling’s T? statistics if a quadratic from w.r.t. shape S~1.

10.28.1 Geometric interpretation

Claim 10.19 look for the ”smallest angle” between 1,, and any linear combination of V1, Va,...,V,, where
Vixp = XT = (V4,Va,...,V,). Looking at the angle between Lyoy(X) € 1,. Let’s all this angle A.

Proof:
Projection matrix onto L., (X) is XT(XXT)71X.
the project of 1,, on L.ow(X) is u = XT(XXT)~"1X1,,.

cos(A)|[Ln|lJu]] =< 1n,u >

B < 1p,u >2 CIIXT(XXT)T1X1,
o<1y, 1, ><uu> n B

cos?(A) nXT(XXT)1X =nXT(S+nXXT)"1X

Woodbury’s Formula:

, STIXXTSTL XTSI
2(A) =nX"[57" — X = < 5
cos™(4) = nX7] nt XS 1K T T4 nXT5 1%
Therefore,
cos?A - - T2
A= ———— =nXTS'X =
« 1—cos?A " S n—1

10-1
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10.28.2 Connection with linear regression

regress

1, = BVi+pVat+--+6,V, Hoy:pnp=0 <= Hy:p1 =pP2=---=0, =0, Hy:at least 1 of 3 are
not equal to 0
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11.29 Null Distribution of T2

If Hy is true, Under Hy: X ~ Ny, (0,1, ® X), assume the angle between 1,, and L4, (X) is A.

Change the frame as if we are sitting down on a fixed p-dimensional hyperplane, where the direction of 1,, is
“uniformly distributed” on all possible directions. Therefore, as long as the projection is concerned, we can
take the plane to be L(eq,eq, ...,e,) where e¢; = (0,0, ...,0,1(i-th), 0, ...,0) and replace 1,, by (y1,¥y2; -, Yn)
where y; ~ N(0,1), iid. Then

37: (y17y27 "'7yp703 30)
yL = (07 "'7anp+1a ~~-ayn)
>
= = v n—
P Y,y n—p 7F

cot’ A

11.29.1 Linear Regression Interpretation
Hy: p=0< Hy: B =0 in regression of 1,, ~ X7 < F-test.
X ~ Npsn(ply, I © )

n

S=> (X - X)(X; - X)" = XxXT - nXX"

i=1
XLs
test Hy: p=20
_ S _
T2 —_ XT{ }71X
n(n —1)
Theorem 11.20 Under the null hypothesis, the hotelling T? statistics has %Fpm_p distribution.

Ex: Let ap. be a fixed non-zero vector, y = a’z = (y1,...,yn), yi ~ N(a®p,a’Sa), iid. Let t?>(a) be the
sample t-test statistics
-2

n
*(0) = 557

n—1
Show that Hotelling T2 statistics. 7% = max t*(a) (Homework).
Lemma 11.21 Suppose S ~ W,(X, m) m > p, then we have

T .
1 ng‘; ~ X2, where a is a p-vector
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a X" "a 2
2 aTS5 Tq ™ Xm—p+1

Proof: 1):

S=XXT, X ~ Npm(0,I,, ® %)
then a” X ~ N(0,I,, ® a’ %)
then a* Sa = (a* X)(a” X)7
The rest is trivial. R
2): We can Simply take ¥ = I,, WLOG, otherwise we can take S = Z*%S(E*%)T7 b = X zq, then
Z:?,lg = bTS 7 Where S ~ W,(I,,m). Also, we can assume ||b] = 1.
So, we only need to show for S W, (Ip, m) u unit length vector —rg— ~ Xon—pr1- Let Tpup = (T1,u)
be a full orthogonal matrix.

R=TTST ~ W,(I,,m)
_ _ r _
R1=1Ts"'r~ [ u} ]s Uy o

Rll R12
RZI R22

Proof:[Proof of Theorem 11.20] Now we prove under Hy: T2 ~ (n — D) Fpn—p-

Then v1'S1u = (R7Ypp, R= { } Therefore, T S~'u = (Roy — R21R1_11R12)_1 ~ L [ ]

Xm—p+1

n—1
XT(E)-1X
= -Vsrsv v w78
X)X/ XT(5)!
- by
X~ NP(Ov E)
X4Ls
S by
2 2 -1
n P( 1 )
Conditioning on X, use 2), we have % ~x2_ p Which implies ;{ig;:){g is independent of X
— 7T 1
= XT(Z)"1X ~ X;- Using 1) and also independent to ﬁ = T2 ~ (n— 1) Fon—p [ |
11.30 Non Null Distribution of 72
What happens to T2 if p# 07
Lemma 11.22 ( Linear Invariance of T?) X, ~ Np*n(uln,l ® E), = Ap.p X when Ap.p is non-

~ = = -1
singular, similarly we can get X = 13" | X;, S = Yo 1(X X)(X X)T and T? = X [m} X.

Claim 11.23 T2 = T2



Proof:

X = AX
S = AsAT
g —1
T2 = X n(n—l)‘| X=T

This means we can even assume X = I, in our proof for the distribution of 72.

_ a -1 _
Theorem 11.24 (Hotelling) If Xpwn ~ N(plZ, I, ® ), ¥ > 0, then T? = X [ﬁ} X has distribu-
tion T? ~ (n — 1) (nuTY=tp) where Fy, ,,(82) is the non-central F distribution. Fy, »,(6%) =

X, (8%)/m1
Xang /M2

p
n—p Fp,n—p

11-3
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12.31 Review

Theorem 12.25 (Hotelling’s Theorem) If X,x, ~ N(ull, I, ® ), then T? = XT(ﬁ)*IX has

distribution:

T? ~ (0 — 1) 72 Fyponep(np 57 1)

n—p
where F,, ,,(0?) is the non-normal F - distribution:

Xn, (82)/ma
Xhy /M2

Fn1,nz (52) =

Proof: Take A =X, so X = E*%X, = Z*%u. Then:
2 _ g2 _ XX o
m=T= Tz @z "1
Denominator ~ X%—p
Nominator ~ Ny(f1,I,/n) = ﬁNp(\/ﬁﬁ, I,)
By definition of non-central Chi-square distribution with non-central parameter:
[+ i3+ 4 i = g = pt S
More generally, y ~ Np(u, ¢X) and is independent from S ~ W,(X, 1), then:
y (537 ~ g Fpm—pt1 (%)

52 = ’uTzflu/C

12.32 Two Sample T-Test

1. Assume X1, Xo,..., Xy, ~ N(p1,02),Y1, ..., Yn, ~ N(uz,0%), and test the hypothesis:

Ho:pp=p2 Hy:pn # po

T-statistics:
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= \/%f;%
S1 =370 - X)?
Sy = Z?il(yg - Y)2
2. Geometry of Two-Sample T-test:

d— (7i(1) 12 1) 1 (D 4 (nz))

ni 0 ni 00U my Yns 0 ng
Z = (X17X2a "'aXn1a}/17}/2a "')Y’I’Lg)
Y-X=d"Z

3. Linear regression interpretation:
Regress variable Z onto vectors (1,1,...,1) and vector d:

Z ~ al, + 6d

p1=pz = =0

12.33 Two Sample T-Test in Multivariate Situations

1. Assume X7, Xo, ..., X, ~ N(u1,%),Y1,Ys, ..., Yy, ~ N(ug,Y), and test the hypothesis:

Hy:py=pe Hy:py # po

T2 =(5—2)" (5 +5)2552) (1 - 2)

S =200 (X - X)(X; - X)T
So =302, (Y; = Y)(Y; - )T

j=1

2. Geometric interpretation:

Zpxn = (X,Y) = (Z1T7Z;‘F,..‘,ZPT)
3. Linear regression interpretation:
_ 1 (1) 1@ 1 (n1) 1 () 1 (n2)
d_(inil > T g s T g ) no 1 g )

dr~ P17t + BoZs + ...+ BnZy

4. Null distribution of T2
Theorem: Under null hypothesis,

T ~ (n - 2)%;71}?]1,71—1)—1



Under non-null hypothesis,
T2 ~ (n — 2)%;)_1va”_;0_1(52)

0% = ™02 (py — 1) "8 (2 — 1)

12.34 Mahalanobis Distance
If X,x1 ~ (x,X), which does not have to be Gaussian, and Y,x1 ~ (¢ty, 2) (share the same ). Then
A = [(py — px)"S (py — px)]?
A is called Mahalanobis Distance between X and Y. Properties: R
1. Linearly invariant: A,x, is non-singular, fix = AX + B, iy = AY 4+ B, then A = A.
2. Connection with K-L divengence: K L(Np(pz, X), Np(py, X)) = 1/2A;
3. Decomposition of A?: Suppose Xp,x1 = (X1, x1) Xo(psx1)), then:
p = p2 = Eo1 X
N3 = T2 — S 1 S

A*(X) = pf Sy + (py) " (S5n) Hug

12-3
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13.35 Fundamental Lemma for PCA
Quadratic form: ||g||3 = g7 Ag, Apxp > 0, A is symmetric, rank(A) = k. Then
A=T1ATT,

where 'y = (1, .oy Yi)s A = diag{ 1, ..., A\ }.
Enrich the orthogonal basis: I' = (I'1, Yk41,---,7p) and A = diag(A1, ..., A, 0,...,0), Thus,

p
A= "Ayi!
i=1

Vg € R?, [lg|l% = " Ag = Y50, Nig" v g = Yo1-y \ibi, where by = v]g = g"vi =< g,7 > is the
coordinate under basis 7;, ..., Vp.

Claim 13.26 Assume rank(A) =p and i.e. A\; >0 fori=1,2,...,p

I':= [Vlary27' .. 77}7]
A =diag(Ai, A, ..., Ap)

A =TATT

Then

1. g% := vy maximizes
o { % <l =1}
with objective value ||g*||4 = M1
2. g* := 2 mazimizes

mc{ gl ol = 1, <. >=0}

with objective value ||g*||3 = Az

k. g* := v mazimizes
mgax{|g124 : ||g|| = 17 <g,7M >= 07< 9,72 >= 07"‘7< 9, Vk—1 >= 0}

with objective value ||g*||% = Mk
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p. g* ==, minimizes ||g||4 on |lg||> = 1 with objective value ||g*||% = Ap

Note: If ||g||?> = 1 then what is the range of |g||%

lgll%
D = g2
Proof: We see that
vgg h1
he=1Tg=| 7| = h.Q
'YZ;!] h.p

gl :==g"Ag = g"TAT g

p
DY
i=1
BlIE =hTh = g"TI"g = gTg =1
So given ||h||3 = 1, what is the range of ||g||% = >0_; A\ih2?
1. h=[1;0;0;... ;0] maximizes > ©_, \;h? to be Ay

2. Ty =0 <= h =0 <= h=[0;00;0;...;0)
Given hy = 0,h = [0;1;0;... ;0] maximizes > ©_, \;h? to be Aa

k. gTq/l:O,ngyQ:O,...,gTvk_l:0 <~ hi=hyo=--+=hp_1=0
Given hy = hg = -+ = h_1 = 0,h = [0;0;0;. .. ; ;... ;0] maximizes > 5_, \;h? to be A
k-th

p. h=1[0;0;...;0;1] minimizes Y% _, A\;h? to be A,

13.35.1 Simultaneous Orthogonality
Since

p
9" Ay = g" (> M v = Ng" )
i=1

Then we have
9" Ay =0 <= ¢", =0,

which means
< 9,7 >=0 <= <g,v >4=0.

Thus, g7v; = 0 can be replaced by < g,v; >4=0



13.36 Principal Components in Sample Space

Given sample

prn - [XlaXQv cee »Xn]

Assume ]E[XZ] =0,5 = XXT, with spectral decomposition

S =rpr”
D:diag(dl,...,dp), di>doy > ... de>0
r= [717’727“'77?]

Definition 13.27

1. }7; =~TX is known as the j-th principal component of X

2. v; is known as the j-th principal factor

3. Let T(j) == [y1,72, - - -]
Then

1s called the j-th principal component representation

4. The i-th component of the vector )7J 1s called the loading of )?z on v;
(Y;): = ’YjTXi

Theorem 13.28 Among all p-dimensional unit vectors g, the first principal factor 1 mazximizes

n

Z(g’T)Z}-)? = [|g" X ||? (Sample Variance)
i=1

where the mazimum s d;
Then among all unit vectors g satisfying G*v1 = 0 or equivalently

§7787=0 <<= F'XXTG=0 < Corr(§"X,~'X)=0

The second principal factor vo mazimizes |g* X||3  and the mazimum is dy
———

sample variance

13-3
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14.37 Basic notions

Y1 7§X
) Y2 72 X

Y =T)'x=| " |= .
Yn T X

where Y (j) represents X, in lower dimension j x n.

SN VE=Tr(Y ()Y ()" = tr(D(G)TXXTT(j)) = tr(C(j)"TDITT () = > dy
N k=1

k=1 1=1
as
1 0 0
o 0 1 0
r'rgy=1 :+ |[(m i) =1 : 0
v 0 0 1
0 0 0

pXJ

j
The proportion of variation explained by Y (j) is %,*;:1 3Z :
k=1

14.38 Population principle components

Suppose X is a random vector in R?, X ~ (u, ), subtracting p — X ~ (0, %) (does not have to be Gaussian).
P

Spectral decomposition ¥ = TATT =3P \;y4T, where I' = (v1,792,...,7) and Ay > Ao > ... > ), > 0.
Theorem 14.29 (1) g = v mazimize Var(gT X) subject to ||g|| = 1, and the mazimum is \;.

(2) Among all unit vectors satisfying g7 v1 = 0 (equivalently, Cov(g" X,7{ X) =0 < ¢g"'Sy, =0), g = 72
mazimize Var(g? X), with mazimum being Aa.
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Proof:
Cov(g" X, hTX) = g"%h

Then use lemma.

Definition 14.30 y; = WJTX — j-th principal component of X.

Y1 ’Y1T
y=| : |=] : |x=1Tx
Yp 7;?

Cov(y) = Cov(I'TX) = A

14.39 Best linear prediction

Theorem 14.31 Suppose X ~ (0,%), X =TAIT, \; > 0,Vi. Let I'(j) = (T'1,...,T;), then
(a) The best linear prediction of X in terms of Y (j) = T())TX is X = 37_, v,y;-
(b) The residual X+ = X — X has covariance matriz

55 = Z Ay with tr(35)) = Z Ai
1=7+1 =741

¢) For any matriz A;v,, Let Z = AX and X+ = X — Yx;¥,+Z, we have
Y JxXp Z zZ

tr(¥5) = tr(Cov(X%)) Z A
i=j+1

The equality holds if and only if A =T(5)7T.

14.40 PCA and SVD
Xpxn = (X1,...,X,) = U Singular value decomposition:

VT

p

X = LpXTCT ><7RT

XN

Where
L=(ly,...,l), C=diag(ci,...,¢), R=(r1,...,1p)

cp>c>...>¢ >0, r=rank(X)

Then
Lcol(X) = LCOZ(L)v Lrow (X) = Lrow(RT) = Lcol(R)

S=XXT=LC?’LT, T = XTX = RC®R”, spectral decomposition

So L is the same as the principal factor.

L(]) = (117. . ,ZJ),C(j) = diag(cl, . .,Cj),R(j) = (7"1,. . ,Tj)

X = Zlczz, Zlcz

14-2



Lemma 14.32

where L(7)L(5)T is the projection matriz onto Leo(l1, .

X(j) = LG)CGHRG)T = LG)LG)TX = XR(G)R(G)T

.., 15), first § principal factor.

Define X(Jj-) =X - X(j) the residual of the approximation.
Define matrix norm: < A, B >= tr(ABT) =Y. 9_, aijby and [|A]| =< A, A >2

Theorem 14.33 Among all j-dimensional subspace of RP, L(ly,.

i=1 J

length, and minimized the total orthogonal square residuals.

14.41

Define g = B%g, g= B_%g . Then

Q(g)

X ()

L(j)CG)RG)T, (X ()i = Zlkckrik

J
X; = E lerran
i1

Y=LTX =CR"

Metric eigenvalues

gl 9" Ag
Q(g) = = LA>0,B>0
) =g, = 7By
GTB~2AB~ 25 §TAg .
=9 ~2T~ 9 _ g~T~g7 where A = B"2AB™ 2
J’g J’'g

Consider spectral decomposition of A = B :AB"% = I'AI'”, where

and I' = (y1,. ..

A =diag(Ay, ...

Yp)

Ay 0,...,0), 7 = rank(A) = rank(A)

§=B"%y, E= BT

Simultaneously diagonalization:

EAE = A, <&, & >a= Nidij

where 0;; = 1 for ¢ = j and 6;; = 0 for ¢ # j. Similarly,

EBE = Ipa < giagj >B= 5ij

A= = (E)7'A,BE = (E7) 7!, A= = BEA, A¢; = \ B¢,

.., 1;) mazimized the projected square

Definition 14.34 The values Ay, ..
corresponding eigenvectors < det(A — AB) = 0.

Notions: Ly (v,...,v0;) = {v: oTsv; = 0,i = 1,..
lemma: )
For Q(g) = 4. 9 = & maximizes Q(g). ------

., Ap are called the eigenvalues of A in the B metric, &1, ..

J}

14-3

., &p are the

. Then we have the corollary of the fundamental
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15.42 Fisher’s Linear Discriminant Analysis

Suppose we have X1~N,(u1,X) and Xo~Np(p2, X). We are interested in a 1-dimensional scalar that provides
the maximum separation of X; and X5. For example, see Figure 15.42.

Figure 15.8: Projecting the data in the downward direction provides more variable separation than projecting
in the rightward direction.

v

In order to analyze this problem mathematically, we let Y; = g7 X; and Y5 = g7 X, for some vector g.
T T 2
Then, Y1~N, (g7 1,97 £g) and Ya~N, (97 pa, g7 Xg). We want to maximize %. To simplify, we

let § = py — p2, A =067, and B = ¥. Then, we consider the maximization of Q(g) = g:gg.

From the lemma in Lecture 14, we let A = B~Y2AB~1/2 = -1/255T%-1/2 and ~v; = ©-1/25. We now
have & = B~/2~; = £~ 1§ and /Nl'yl = N"1/256T2-1/25-1/25 = X1y, where \; = 672 ~16. Because rank([l)
=1, we also know Ay = A3 = ... = 0. The max value of Q(g) is \; = 672715 = (1 — p2) T2 (1 — p2)
which is exactly the Mahalanobis Distance.

15.43 Critical Angles

Suppose there are two subspaces L and L 4, of dimension p and q respectively, located in an n-dimensional
space, as seen in Figure 15.43. We are interested in the smallest angles between subspaces, or critical angles.

To represent Lp, we let Xy, = (X1, X2,...,Xp) = (Ul,’l)g,...,’l}p)T. Then, Lg = Lrow(X). L4 is a
g-dimensional subspace of R™, represented by projection matrix (Pa)nxn. For all u € Lp, we can write the
row vector u = g7 X for some vector g. Given u, the projection of u onto L£4 @, has the smallest angle
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Figure 15.9: The two subspaces shown here share a line in n-dimensional space. The smallest angle between
these two spaces is 0.

between u and L4 (i.e. smallest cos?(6(g)) where 0(g) is the angle between u and 4). Mathematically, we
represent this as follows.

i =uPs =g " XPs = g"X where X = X Py
2(()) = N _ g7 XXTg _ g"XPsXTy
cos” (00 = | = gTxXTy = gTXXTy

We now define A = XP4 X7, B = XX7, and A = B"Y2AB"Y/2. Then, B— A = X(I — Py)XT =
XP4XT >0and B-Y2(B - A)B~'/2 = [ — A > 0. The latter inequality implies the eigenvalues of A are
less than or equal to 1. We can organize these eigenvalues such that 1 > Ay > Ay > ... > A, > 0. The results
are as follows.

1. g =& and uy = £ X maximizes cos?(0(g)) = A
2. g =& and u; = £ X maximizes cos®(6(g)) = A2 subject to g7 A& =0, " B& =0

k. g =& and up = £F X maximizes cos?(0(g)) = A subject to g7 A& =0, g7 B¢ =0V i€ {1,2,...,k—1}

p. g=¢&,and uy = EEX maximizes cos?(0(g)) = A, subject to g7 A& =0, g?' B¢, =0V i€ {1,2,...,p—1}
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Geometry (p=g=2,n=23)

3-oim

y2 Ly, 2 Llyn

_flTX_ (1]
V==TXx=| : | =|:

_ng_ L Yp ]

[IX] ]
V=eTX=|: |=|:|=E"XP4

& X1 Ln]

YY' ==Txx"==="B=1,
VYT ==TXPaXxT=2=2TA=A
For pairs (ylmgk)v k= 1527 Ry
(1) The y} s are mutually orthogonal ||yx||*> = 1.
(2) The 9, s are mutually orthogonal ||g||? = A
(3) All 2p vectors are mutually orthogonal < y;,7; >=0if ¢ # j.
(4) The smallest possible angle between £ 4 and Lpg is between y1, 9.

The next smallest angle is achieved by ya, J2.
From (1)-(3) we get that:

Y ror [ Ip A
o= (3]
Comments:

(1) The y and § are intrinsic to £4 and Lg. They do not depend on the choices of the base.

U1
Xp><n =

Up

(2) You can start from L4, then project onto Lp and get the same answer.



Definition 15.35 01,02, ...,0, are called critical angles between L4 and Lp.

15-4
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16.44 Canonical Correlations

Ri,Rs,...,R, and 51,954, ..., 5, are random variables, R = [Rl, e ,RP}T, S = [Sl, e ,S,JT. Assume that
E(R) =E(S) =0, Errpxp) > 0,Xs5(gxq) > 0.

Recall:

(u,v) = Cov(u,v), (R,S)=XRs
R= ERSEEéS is the linear combination of S that has the highest correlation with R = R projected to space
span by S.
T

2 g Ag
p*(g) =
g'Bg = Cov(¢"R,¢g"R)
gt Ag = C’ov(gTR, gTI:E)

where A =X pp = ERSEgéESR and B = Y rg. We want to find g such that p?(g) is maximized.

A=B712ABTV? = EIE}Q/QERszgéESREI;}%m

Theorem 16.36

1. The greatest correlation® is achieved by
Vi=¢[R and Vi =¢TR=¢lSRen5tS,
the value is \q.
2. The second greatest correlation® between linear combination of R and linear combination of S is
Yo =&'R and Y, =¢lR,

subject to
Cov(Ys,Y1) =0, Cou(Yse, Y1) =0,
0, 0

CO’U(}/Q,}AG) =

Definition 16.37 /A, Vo, ..., \/E is called the canonical correlation between R and S, when p = 1. This

is multiple correlation.
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N-olim

16.45 Projection ratio and critical angles

p—dim subspace Lp

p—dim volume of C: Vol,(C)
g—dim subspace (p < q)
p—dim volume of C: Vol,(C)

Theorem 16.38 The p—dim volume of C and C are related by Vol,(C) = Vol,(C) [T, cos ., where
01,05, ...,0; are critical angles.

Proof:

1. Rectangles:

N-olim




Vol(C) = [t - |92]|
Vol(C) = [lya| - |y2]]
Vol ol (el

= cos B - cos Oy

) _ .
Vol(C)  lwill Iyl

2. Project what we have onto axis 41, 92.

%,

3. What we get can be approximated by rectangles, since C consists still only of rectangles.

16-3
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There are k population group 7,7, ..., T, each has probability density function f;(z), j =
The goal: given a future observation z, allocate x into one of the groups.

k
Classification rule: A division of R? into disjoint regions Ry, Ra, ..., Ri, such that |J R; = RP (or the
i=1

1=

full space). Therefore, allocate x into 7; if z € R;.

17.46 Maximum Likelihood Classification Rule

Allocate z to the group that gives the largest likelihood to x, L(z) = argmaz{f;(x)}

17.46.1 Example: Multinomial distribution (k = 2)

II; : multi(n, aq, az, ..., o)

Iy : multi(n, B1, B2, ..., By)
|

g

n. ]
————— [ [ ¥ — Group 1 likelihood
z1lza!l.zy! Pl

| g
— T 8 — Group 2 likelihood
z1lza!l. zy! P}

g
= log likelihood ratio = Z x; log(
i=1

Bi

%) >0 ztom
<0 ztoms

where Y7 x; log(5%) is linear boundary.

17.46.2 Example: Fisher’s Linear Discriminant Analysis
Group II;: X ~ Np(ps, 2).
Maximum likelihood classifier (general likelihood rule):
L(X) = argmin(X — p;) " 27X — py).
J

For specific case: K = 2,

>0 —»>Xely

<0 > Xelly’

L(X) : (i — ) 27X = ) {

In other words, if define § := p; — 2, the classifier is checking the inner product of 71§ and (X — %)

to classify X. The following is a pictorial demonstration.
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Figure 17.10: Linear Discriminant Analysis Example

~

/;'--*--'{\

(((D)] ERa
(U \'—"ﬁ /) |
3 T

prUJELtibn \
\ X

e
[3%]

Projection direction: 271§

17.47 Bayesian Perspective

Joint model (X,Y), where Y is the class label. Denote
Likelihood: f;(X) = f(X|Y = j);

Prior: m; = 7(Y = j);

Posterior: P(Y = j|X).

For specific case: K = 2, the log posterior ratio is

PY =01X) | m f(X]Y =0) J(X]Y =0)
PY =1X) 2w (XY =1) JXY =1)

(in Normal case —) = log T0 4 XT$~15 + constant.
1

log = log o + log
™

= P(Y =j|X)xn(Y =j) f(X|Y =j). (i.e. posterior  prior - likelihood)

17.48 Sample Version

In practice, we do not know 6 in the f;(X|6). Simple solution is to get an estimation 6 and plug in 6 + 6.
(For example, in linear discriminant analysis analysis, 8 = (ju1, ji2, %) and 0 = (jiy, fia, 2).)

Issue: need to consider the variation in 6 caused by estimation uncertainty. This issue is hard to address
using frequentist approach but can be well addressed under Bayesian perspective.

6 in Bayesian comes from P;(#|X) where X is in the jth group. Then the classification rule

Ly (XneulX) = [ £5(Xoeul )P (018
integrates variations of 8. It is called posterior predictive distribution.

The advantage of Bayesian setting over frequentist is that Bayesian setting incorporates the variation of
in the posterior predictive distribution, which frequentist cannot do.
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17.49 Logistic Regression
With Y € {1,2,..., K} and X, logistic regression has the following form:

exp{ B, + B} =}
1+ 50 exp{Br, + B 2}
1
1+ 3 exp{ B, + B2}

k=1,2,...K -1,

P(Y =k X =2)=

PY=K|X =z) =

Equivalently (relative form):

P(Y = k|X =)

o8 By —RX = 2)

= Bro + B, k=1,2,.... K — 1.

Let’s assume K = 2 from now on. Then

PY =1X =2) .
10gP(Y:2|X=x) = fo + py T

Recall Linear Discriminant Analysis (from previous notes), the decision boundary is

(b1 —p2) SN (X —

,ul—‘r,UQ) >0 — Xell
2 <0 > Xelly,’

In the posterior form:

P(Y =1|X = z)

J@ly =0)
log By —2[x =2

flzlY =1)

= log o + log = constant + ' 271 (note:d = g — po)
1
=qp + oleac.

Therefore, Logistic Regression and Linear Discriminant Analysis both use hyperplane as decision boundary.
However, they estimate the coefficients differently.

e Linear Discriminant Analysis: (X|Y = k) ~ N(ug, ). The full likelihood is
P(X,Y) = P(X|Y) - P(Y).
In estimation, the method gets [ix, 3 for boundary 71§ to maximize full likelihood.

e Logistic Regression: The partial likelihood is
[[PY =yl X = ).

In estimation, the method gets [y, 81 directly to maximize partial likelihood.
Comments on the comparison of these two methods:

1. Linear Discriminant Analysis: model bottom up (model the distribution of each group P(X|Y = k),
more statistical).

P(X,Y)=P(X|Y)-P(Y), P(X) :/P(X, Y)dy.

P(X) is normal mixture.
If your underlying data is close to normal, then Linear Discriminant Analysis will be more efficient.



2. Logistic Regression: model top down (model partial data P(Y = k|X = z), more machine learning).
P(X) is not specified. Since not assuming normality, it is “robust”. Being “robust” means if the real
data is indeed not normal, the method still holds; but if the data is close to normal, it loses efficiency
(roughly 30%).

Also, if data is perfectly separable, it could cause issue for logistic regression, not for linear discriminant
analysis.

The following are some pictorial comparisons of these two methods in 2-dimensional cases.

1. When the data is normal (and separable), Linear Discriminant Analysis is more efficient. The three
lines for Logistic Regression are equally good, since the likelihood is at global maximum at all of them.

Figure 17.11: Data is normal

Linear Discriminant Analysis Logistic Regression
4 t JE VR IR L] ..‘: °
x NF % LY
x x o ®
®
ﬁl:z
three lines equally good

2. When the data is not normal, Logistic Regression is more efficient.

Figure 17.12: Data is not normal

Linear Discriminant Analysis Logistic Regression

® x [ ]
®
x&. ®
t ®
»® “xg.. .0
x ° °

(probability of mis-classification minimized)

3. When the data is not linearly separable, two methods would both fail.

The common feature of these two methods is they both use separating hyperplane. In the next lecture,
we will introduce support vector machine which uses data close to the margin of groups to find separating
hyperplane.

17-4
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18.50 Separating hyperplace

Let f(z) = Bo + B¥x and define L = {x : f(x) = 0}. Then

e For any two points x1, 2 on L, we have 57 (21 — 22) = 0.

e If we define the unit normal vector 5* = Hgil\ , then for any z, the signal distance of = to L satisfies
a7 iz Blag  Po+piz
d$,L:ﬂ*T,1:—x = T —xg) = — = ,
(0B = e = 0] = g @ =20 = a0y g = A

where x¢ is an arbitary point on L. Therefore, G(x) = sgn(f(x)) gives the classification.

18.51 Rosenblatt’s Perception learning algorithm

We try to find a hyperplace by minimizing the distance of misclassified points to the boundary.

Define M as the set of misclassified points, then we aim to minimize D(f, 1) subject to ||31]| = 1, where
D(Bo, B1) = Y 1Bo + B mil-
ieM

Moreover, if we label y; € {—1,1}, we have

D(Bo, 1) = D 1Bo + Bl sl = Y —ui(Bo + BT )

€M €M

= Z(*yi(ﬂo + 81 wi)+
Assuming that M is fixed, we take the derivatives and obtain

851 Z YiTy

ieM

FIN /80 - w

€M

(18.10)
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18.51.1 Algorithm: stochastic gradient decent

Instead of computing the sum in (18.10), the gradient decent step is taken after each observation is visited.
For each i in M, we update (81, 50)" by (81, 80)" = (B1, Bo)" + n(yizi, yi) "

Gradient decent possesses two nice properties: 1. the simple algorithm is easy to code; 2. if the classes
are separable, then the algorithm will stop in finite iterations. However, there are some issues about the
algorithms. It converges very slowly and never converge in non-separable case. Also, it produces infinite
solutions in separable case.

18.52 Optimal separating hyperplane

In separable case, we want to find the hyperplane that maximizes the minimal distance from either class.

T
Recall we have proved for any x, the signal distance to the hyperplane is A OIIE? |1| T then we aim to solve the

following optimization problem

i T
max{rn_in yl(ﬂo + Bl l’)
Bo,Br~ i 181l

b

or equivalently
A T
max O, 5., Y00+ 612)

> C, Vi,
B B2

or equivalently

max C,s.t. y;(Bo+ B x) = C, Vi,
BosllB1lI=1

or equivalently, take [|31]| = &,

max ||B1]|,s.t. yi(Bo + Bf x) > 1, Vi,
Bo,lIB1]I=1

We introduce the Lagrange multiplier L,
1
Ly = 5 1B1% = 3 il + 672) — 1), (18.11)

where «a; are non-negative coefficients. Taking derivatives with 5y and (1, we obtain

pr = Z Qi YiLi
i
0= Z oy Y;
i

(18.12)

Substitute (18.12) back into (18.11), we have
1
Ly=) =53 > oigyy;z] (18.13)
i P

From convex optimization with convex constraint, we also have KKT conditions
ai(yi(Bo + B{ xi — 1) = 0,4, (18.14)

which means either a; = 0, or a;>0, y;(8o + B x;) = 1.

We can get optimized Sy, 51 from (18.12),(18.13),(18.14) and we can find only support vectors determine
the By, 81. Because (18.12) means 8; depends only on points with «;>0. In other word, 81 only depends on
support points.



18.53 Comparison of Optimal Separating Hyperplane(OSH) with
Linear Discriminant Analysis(LDA)
e LDA bottom up. OSH top down.
e OSH more robust to outliers.
e OSH sensitive to support vectors(support points).

e Only partially true that 8y, 51 only depends on support points( “which ones are support points” depends
on the entire set.)

e If data is indeed normal, LDA is more efficient.

e If data is not linearly separable, OSH will fail but LDA will still work.

18-3
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19.54 Convex Optimization

Assume f, g, h are all convex (h must be affine as well to have a convex program).

argmin  f(x) (Primal Objective)
st gi(x) <0,Vi=1,2,..,ns (Constraints)
hij(z) =0,Vj=1,2,..,n
z €RP

Theset X = {x e RP : g;(x) <0,Vi=1,2,....,n1,hj(zx) =0,Vj =1,2,...,ng} is called the primal feasible set.
If a solution exists to the problem is denoted by x* and it’s called primal solution. Respectively, p* = f(z*)
is the primal optimum.

19.54.1 Lagrangian Function
We define Vo € R?, VA € R™ and v € R,

ng
Lz, \v) —&—Z)\Zgz +Zujh](m)
Jj=1

The Lagrange dual function for A € R%}’

A\ v) = xlélﬂgp L(z,\v)

It holds that the dual function is always less or equal to primal optimum p*. Indeed, VA € R}",v € RE :

A\ v) = T1€n]1£p Lz, \v) < ;2%”55’ A\v) =infrex(f(Z) + Z)\,gl —1-21/] ) <infzex(f(Z)) = p*

70

Thus VA > 0,A(\,v) <p
19.54.2 Dual problem

argmax A(\ v)
st A>0,v

Dual feasible set: Z = {\,v : A € R}/,v € R"#}. Dual solution is denoted by A*,v* and the dual optimum
as d* < p*.
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19.54.3 KKT conditions

Necessary and sufficient for p* = d*. Necessary conditions:

P = fla) = dt = g w) = inf (F@) Y0 Na @)+ 3] vk (w) € S+ D M@+ vihy(a) < F@)

rERP

2* minimizes L(xz, \*,v*) over all € RP. If L is convex differentiable, then
VaL(a®, N v) = 0= Vo f(2*) + Y A Vagi(@®) + Y _vjVah;(a®) =0 (19.15)
i J
We also get

Agi(x")=0,Vi=1,2,...,n; < A =0or g;(z") =0,Vi =1,2,...,ns (19.16)

Finally, for z* € X, (\*,v*) € Z:
gi(z*) <0,A7 >0,h;(z*)=0 (19.17)

(19.1), (19.2), (19.3) constitute the KKT conditions.

19.54.4 Sufficient conditions
Suppose &, A, 7 satisfy (19.1), (19.2), (19.3). Then

x — L(z,\, D)

has gradient zero at Z. Now, if € L(z, 5\, U is convex then z must be the minimizer.

g\, 7) = inf L(r, N\ 7) = L(i,\ D) = f(Z) + Z Xigi (%) + Z vihi(%) = f(%)

However, we also have VA,v  g(\,v), < p* = infuex f(2) = \, 7, & makes equality hold = Z is minimizer
for inf,ex f(2) and A, 7 minimize g(\, v).

19.55 Classification

Classes:
Yl, ey Yy € {—1, 1}

Features:
X, XN

Discriminant function f(x) and choosen class G(z) = sgn{f(z)}.
19.55.1 Model based
Linear Discriminant Analysis. Full likelihood (X,Y")

PY =k)=m;, PX[Y =k)~N(u,X)

A4 . flo — [1
Fa) = BTa+fo = (B (i — i) T (e = B2
Logistic Regression:

exp(f(z))

P = T ep(f @)

fl@)=8"z+ B
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19.55.2 Separating Hyperplanes

minimize misclassification.
e Optimal SH. problem: Fails when data not linearly separable.
e Support vector classification

Idea for Support vector classification: introduce slack variables:

1,8, st & >0, Z& < Constant

Optimize margin but with slack:
yi(Bo+ Bl @) > C(1 = &) Vi

(£ = 0) outside margin, (0 < & < 1) inside margin, (£ > 1) wrong classification. Problem:

max C

s.t ﬂ(h”ﬁl” =1

Let B = g,ﬂo =B, ||B\| = % The dual of the above problem is:

min S|B+r Y6
st yi(Bo+ B &) >1-6,620

Using KKT conditions: L, = 3[|61]> + 7Y, & + (1 — &) — %i(& B + Bo)] — 2 St

oL, al
0 - aiﬁl - 61 - ;azyzxz

oL
0=_-L= ;Y
B = 2O

oL
E=r—pp—ai = o =1~ p; = o; € [0,7]

- 0&
Substituting back, the dual objective function becomes:

1
Lp = Zai -3 Zaiajyiij;rwj
i

4]

0

The problem becomes:

max Lp
st 0<qa; <, Za,{gi =0
The rest of the KKT:
ailyi(x] B1+ Bo) —(1—&)] =0
& =0

yilxe] B+ Bo) —(1—&) >0,& >0. B = >, aiyixi. B1 depends only on i for which «; # 0. For support
vectors «; # 0 = yi(xjﬁl +B0) —(1—=¢&)=0.



For a; #0:
& =0 on the edge
0<¢& <1 inthe margin
& > 1 misclassified

For those «; = 0, ”inner points” no effect on 3.

et {": 1 {‘:’ v

<O, Rz I
o :ﬁgq‘ o b \\‘,u( 0 0(&56{'f{£hﬁ”\

:elar) 577 randry
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20.56 Support Vector Machine

; : : 2 .3).
Enlarge feature x; using basis expansions (e.g. ;, 7, x3):

h(l‘z) = (hl(l‘z), hQ(JJi), ...hm(l‘i))

Fit Support Vector linear classifier on h;(x) with discriminant function
flw) = BTh(x) + fo

and decision
G(x) = sign(f(z))

Lagrangian dual with the enlarged basis function:
N 1
Ly = Y oi— 3 > aiagyiyih(x;) Th(z;)
i=1 ij
al 1
= ) oi— 3 > aiasyiy; (h(i), h(z)))
i=1 i,

N
B = Zaiyih(xi)
fl@) = BTh(z)+ B

N
= Zalylh(.’tl)—rh(if) + betao
i=1

N
= Z a;yi(h(zi), h(z)) + Bo

KKT conditions:
o;(yif (i) —(1-&)) =
yif (i) — (1= &)
Observation: h is related to prediction and optimization only through (h(z;),h(x;)) so we do not need

to specify h(x) at all. It is sufficient to specify (h(z), h(z")) for all z,z’.
Kernel function:

Y

K(z,2') = (h(), h(a")).

As long as I know K (z,z’), I don’t need to know h.
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K(x,2’) is symmetric:

and positive definite

! ! K(xzy,21) K(xq1,29) K(xy,2,)
! ! K(xg,21) K(x9,x2) K(xzo,x,)

Vn, Vo, ..., t,, K N I =
b o K(xp,x1) K(x,,22) K(xp,x,)

is positive definite matrix.

N
fl@) = Y oK (i, x) + Bo
i=1

WE

Ly = a; — ZaiajyiyjK(xiaxj)
i=1 g

With a kernel function, the support vector classifier is referred to as support vector machine.
Some choices of the kernel K(z;,z;)
1. d-th polynomial: K (z,z’) = (1 + (z,2'))?

|lz—z

2. Gaussian radial kernel: K (z,z’) = exp {—%”2}

3. Neural network: K(x,2’) = tanh(K;(z,2') + K2)  (tanh(z) = flT: -

20.56.1 Tuning parameter r

large r = fewer possible £ = less mis-classification = boundary more ”wiggly”

o )
o o XX
o o KOK A

> o <
< X x

small r = ||8]|? small, > &; to be large = more positive £ = more tolerant on mis-classification = boundary

will be smooth

o o
o o X X
X 9\
o o 9 x
> - <
w %)Vx

Cross-validation to tune r.
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20.56.2 Loss function

SVM:
] N
min - D(8) = 5 IBI* +7)_&
s.t. & >0 -
yi(z] B+ Bo) >1-¢&
N 1
& min Zl—yz z;))) 4 +AlI8I7 )‘25
Ly, f) = (1 —wif)+
where
f=Bz+po
if linear.

LDA: L(y,f) = (Y — f)2 = (1 — Yf)?. Linear regression as if y € {—1,1} are continuous response

variable.

Hint: Y = (—=1,+1,-1,+1)", X = (21, ...,2,), X = 0, and ny, ny with n; +ny = N, ny = na.

(o) = (XXT)'XY, fc:(ﬂ)

X
£XT = g XX
n
> ny — Nag
XY =
( 1 X + anz)
PN 1
= 0, — - X
(ﬁo; 5) < ) n 2))
fo + i
fl@) = Sz —fu)(@ - )
which is the same as LDA.
Logistic regression:
el 1
= 1 = =
P =11X) 1+ef e 41
1
PY=-1X) = ——
¥ =-1%) = 1o
1
PY|IX) = ———
(Y1X) 1+eYS

1
minimize : —log P(Y]X) = —log Tre T = L(y, f)

Support vector classifier, LDA, logistic regression are all linear classifier trained with different loss function.



20.56.3 Kernel and linear classifier

Support Vector Classifier non-linear
Ly, f) = (1 =yf)+ kernel
Linear Discriminant Analysis  non-linear
Ly, f)=@—f?=0-yf)?  kemel
Logistic Regression  non-linear
L(y, f) =log (1 + e7¥7) kernel

Linear Regression
w12 — Gaussian Process Classification
X(XTX)7IXxTy (XX = (z,2))

Support Vector Machine

Gaussian Process Classification

20.57 Clustering Analysis

(X;,Y;) - classification. Y; = 41 have it at least for training data.
(Xi), - clustering. X;: p dimensions.

Goal: given n observations which are believed to be heterogenous. Want to group them into K homoge-
nous subpopulations, where K is also unknown.

Distances and dissimulating measures - X, X', d(X, X'): real valued

d is said to be a dissimulating measures if

1. symmetry: d(X, X") = d(X’', X)
2. non-negativity: d(X,X’) >0
3. identification: d(X,X) =0

20-4
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21.58 Distance & dissimulating measures

x,2’  d(z,2’) : real valued. d is said to be a dissimulating measure if:
(1) symmetry: d(z,z’) = d(a', x)
(2) non-negativity: d(x,z’) >0
(3) identification: d(z,z) =0
If furthermore, d satisfies
(4) definiteness: d(z,2") =0 iff z = 2’

(5) triangular inequality: d(z,2’) < d(z,y) + d(y,z’). Then d is called a distance metric.

21.58.1 Quantitative variables

(xi)j S R, x; € RP

e Euclidean distance: d(z,z') = ||l — /||
e.g. Ly distance: d(z,2') = \/>2F_, (z; — a))?

Ly distance: d(z, ") = 3°7_, |x; — f]

2
p  (zj—z})
j=1 s2

e Pearson distance: d?(z,2’) =

sf the variance of j;h feature
s; can be replaced by some robust measure of “spread”
e.g. s; = interquantile range

A1
e Mahalanobis distance: d?(z,2') = (z —2')>. (v — ')
2 = I — L, distance
>~ = diag — Pearson distance
“How to estimate precision matrix 327" (sparse)”

21.58.2 Ordinal variables

e.g. rank of preference
often coded by contiguous integers. such as 1,2, ..., M

i—

1
often treated by replacing i by —/ & pretend as if they are quantitative in nature
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21.58.3 Categorical variables

“look up” table dissimulating matrix

///\\
i A
pe N
Bozt-t,) 77 AN
) / Do=(>,1)
V
u, 2

0y !

21.59 Clustering algorithms
e Model based

Assume x; are independent, each comes from any one of g possible sub-populations with density function
fla,0k),k=1,2,...,g.

At
likelihood: Let v = [ : | to be assignment of z;. v; € {1,2,...,g} . One way is to view v as parameters.
Tn
Cp ={i:vi =k}
g
L(’77917 "'79/6) = H H f(miaek)
k=1i€eC},
The MLE:
('Ay,él, ...,0}) = argmax L
7701,...,9k
Issue:

(1) combinetorial optimization
(2) treating « as parameters is arguable

Better approach: view ~ as missing data
special case: treat f(z,0) ES N (pg, X)) complete data likelihood:

L(@l, ceny 6‘k, £E,’}/) = L(/l,l, veey ‘Ll,g, 21, veny Eg,’ﬁ, ...,Tg)
9 g
= Ly =k) TP (i5 piks X))

1=1 k=1
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log_ likelihood:

n g
log L =" 1(y,=ry(log 7 +log &(xi; p, )
i=1 k=1

21.59.1 Expectation-Maximization Algorithm
E-step:
Q010" = B, 0 (logL(8; z,7))

n g
e, 00 (Z > L{yi—iy(log 7 + log ¢(wi; . Ek)))

i=1 k=1

[
M)

©
Il
=
£l
Il
-

(Ey 200 (L{y,=ky))(log T + log é(w4; pur, X))

(Ti(f))(log Tk + log & (w5 pug, X))

I
M=

©
I
—
b
I
-

T = P(yi = klw; = ;,01)
IR I)
9 (sl 20

M-step: maximizing
e+ — arg max Q(6|6™)

n g
argmax Y Y Tt (log 7ic + log ¢(a:; i, Zi))

Th Mk 2k i=1 k=1

where

n g
ZZTI( (log T +log ¢lwis i, X)) ZZTZ(;C)IOQT JrZZTl(;f) ( (@i — ) TS5 (s PJk)eret(Ek)])

i=1 k=1

n (t)
1) i Ty, 1 0)
T = Z Ty

k = =

n t
?:1 Zi:l Ti(j) [t
(t+1) _ 2ic1 Ti(ﬁ)xi
Ky Zn T(t)
S T (@i — ) D) (@ — )T

X =
(t
Z’L lT )

local maximizer



21.59.2 Combinatorial Algorithm

Seek the cluster assignment that minimizes some loss function based on dissimulating measures.
A natural choice of loss function
g
Z Z d(zi,xj), v — assignment

k=14,5,v(1)=(5)=k
total within-class distance

| —

W(v) =

Equivalent description:

1 g
B(y) = B Z Z d(w;, ;)
k=11i,5,v(i)=(j)#k

total between-class distance

21.59.3 K-means Algorithm

K-means algorithm assumes all variables are quantitative and use Euclidean Lo distance? as dissimulating

metric.
1< )
W =33 Y lm-al
k=114,j,v(i)=v()=k
17
k=1 in~(i)=k
where

T = mean vector from the k-th cluster

ny = cluster size of the k-th cluster

An iterative desent algorithm: minimizing the following within-class distance

g
minan Z llzi — mgl?
m

k=1

" ~(i)=k

21-4
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23.60 Factor Analysis

A mathematical model that attempts to explain the correlation between a large set of variables in terms of
a small number of underlying factors (assuming that the underlying factors are not observed).
The factor model:

ip - A‘T + ’ + lip
observation factors mean of Yj-constant

Apxi: factor loading matrix, constant across observations.
u: random vector, unique factor (specific).

Assumptions:
E(f) =0, E(u)=0.
Cov(f) I Cov( ) = diag(1,...,¢¥p) =9
Cov(f, u) =

E(Y) = Cov< )= AAT 492y
23.60.1 Factor models are scale-invariant

suppose Z = C-Y, C =diag(ci,...,cp)
=(CA)f+Cu+Cu

23.60.2 Issue: Rotation Invariant

= (AD)(T'T f) + u + p, T : orthogonal matrix
Fr=Tlf N =Af, Y =Nf +u+p

We need further constraints to make model identifiable.
Common constraints:
(1) AT9p~1A is diagonal, otherwise (if not diagonal) we do spectral decomposition on AT¢)~1A = TA*T7,
then we take this T'. Let A £ AT, then AT¢~'A is to be diagonal.
r (2) ATD71A is diagonal, where D = diag(¥) = diag(c11, 092, ...,04p); If data is standardized, i.e.,
diag(2) = (1,1,...,1), (2) then will be constraint: ATA = diagonal.
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23.60.3 Count # of Free Parameters

1
E:ip(p—i—l)for free

A& :pk + pfor free

Constraint (1) or (2) requires a k x k matrix (AT 1A)kxk, (ATD71A) k) to be diagonal.

1
ik(k — 1) constraints

1 1
Total freedom : §p(p +1)—[pk+p-— §k(kz —1)]

= SR 5o+ h).

No guarantee this is > 0. For the usual usecase, k < p, then the model is “fine”.

23.60.3.1 Example

p =3,k =1, degree of freedom = 0, the solution is unique.
1 > 0, otherwise cannot be covariance matrix.

23.60.4 How to estimate

p=Y
“MLE” by assuming
Y~ N(p, %)
where
Y =AAT + 9
subject to constraints
ATy~ 'A = diag
or ATD7'A = diag
frly) = : c exp(—(y — WAAT + )7 (y — )
(v27)P det(AAT + )= 2

A5 Y1, ooy yn) = Y logy ()
=1

A, = arg max LA, )
A

)

Let 3 be sample variance-covariance matrix. 5= ﬁ Yo (Wi — 9 (i — 97T,

We know 3 is MLE without ¥ = AAT + ¢ constraints.

max (A Y) & m/&n loss(3, A),



where loss function is sum of square of all off-diagonal elements.

& min > (£ - AN

1<J

If not normal, this estimate can be thought as Method of Moments estimation. Or, can be thought as
quasi-MLE if Gaussian is mis-specified.
“MLE ”(or quasi-MLE) helps for hypothesis testing to decide k.

Generalized likelihood testing: —2log LR ~ XZfl— dfs

In the special case where data are standardized, diag(3) = (1,1, ...,1)

e then AAT is also the model correlation matrix (on off-diag elements).

e and diag(AAT) is the proportion of variance explained by factors.

Comparison: | F A PCA

(1) model based model free

(2) degree of freedom when choosing k choose as many as you like
(3) uniqueness(rotation) no such issue

() don’t interpret the factor, interpretation: direction with

(5)

but can be used for comparison, prediction.
miny (2 — AAT)?,
A i
minimize off-diag difference
L=AAT +9
model for correlation

max variability across data.
min ) (X — F(k)A(k)F(k)T)fj
4,J
for the first k principal components.
all elements difference
Y =T(k)AK)T (k)T

model for entire variance covariance

23.61 Independent Component Analysis (ICA) [Signal Process-
ing]

Model Y =Af+u+p
Assumption: f and u are independent.

1. fz-Hfj,fiHuj,u,-Huj

2. fi’s are non-Gaussian.
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24.62 Independent Component Analysis (ICA). [signal process-
ing]
e Model

YP:Apkak+u+H

e Assumption
f and u are independent.
L] fiJ_fj.fiJ_uj.uiJ_uj
e f;” s are non-Gaussian

e Simple case

Cocktail Party Problem:k person in the room with P microphone
Y=Afp=k.

g: joint distribution of f. g;: distribution of f; under in dependence:

=

g(f) = gi (fi)

i=1

k
Use KL divergence to measure distance between g and [] ¢; (f;)
i=1

KL(g,h) = —Eg (1og g)

Then

s (o) = (S 1= (1) 1)
:g/_loggi(fi)g(fi)dfi—/—logg (f)g (Jj af
k

= Z Entropy (g;) — Entropy (g)
i=1

Since P = K
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Y =Af.f=A"1Y.
Entropy is in variant under linear transformation. So,

Entropy (g)=Entropy(Y’) and is observed.

k
min KL (g, I gi) ©min ¥ Entropy(fi) (*)

i=1
Given mean and variance, Gaussian maximizes the entropy.

(*) & Given mean and variance, we are moving away from Gaussian.

but sty o{{m%},y/

24.63 Gaussian Process

e Linear Regression
e Ridge Regression
e Bayesian Linear Regression

e Gaussian Process Regression

24.63.1 Linear Regression

e Response

Y1

Y =

Yn

e Predictor (Feature Matrix)
T
)
Xn><p =

Tn

where z1 - - - x,, are row vectors of length p (p features )
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e Model

Y=X0G+¢
€~ (O, 02) doesn’t have to be Gaussian

e Training (Estimation of J)

Minimize loss function in MSE (mean square error )
Lasse () = 5 32 (5 —2iB)” = 3(Y = XB)" (¥ - Xp)
In the case where e ~ N (0, 02), the log likelihood can be loss function

loglike (3) = ; [_%bg (2r0?) — %w]

which is closely related to Lysg
Then,

argmin Lysg (8) < arg maxloglike (3)
B

Check:

0 = 2Lyee — 2 (_XT) (v — XB) = fOLS = (XTx) ' XTY
Y= X3 =X(XTx)"'xTy

Y is the projection of Y into Lo (X)

e Questions
What if X7 X is (nearly) singular?
Undesirable: small change in X or Y =-big change in B and Y

24.63.2 Ridge Regression
e Idea: Add constant on diag (X7 X)

Bridge — (XTX + )\I)_lXTY
Y’ridge _ XBM'dge _ X(XTX +)\I)*1XTY

where X is tuning parameter

e Bias -Variance trade-off (HW4)

B”dye is biasing towards 0, but has less variance.
MSE = bias? 4 variance

B”dge can have smaller MSE to the true 8 for some X in the sweetspot



e Choice of \: cross—validation

e Connection to noise—injected data

What if feature data has nolse injected ?(noise in X)

— data contamination
— survey data inaccuracy

— privacy (researcher add noise intentionally )
Define,
jgoLs — (XTX) 71XTY

-1
~ (A4 27 (x+2) HX +2)TY = (BXTX 432724 IXTZ 4 227X) T (BXTY + 127Y)
~ (AXTX +031) (AXTY) = (X7X + no31) (X7Y)

In real-world big data, X almost always have noise = implicit ridge penalty is applied.

Many ML tricks involving noise injection in training (stochastic GD dropout layer) which the model
robust can be though of as implicit regularization.
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26.64 (From previous lecture) Summary of Gaussian Process
Gaussian Process is appealing because it:
1. Quantify uncertainty, which includes

e Intrinsic noise

e Errors in parameter estimation
2. Non-parametric regression: can model any arbitrary functions
3. Introduce kernels into regression:

e GP = Ridge Regression + kernel base
4. Simple and straightforward linear algebra implementations.

Downside: computational complexity (for K1)

26.65 LASSO (Least Absolute Shrinkage and Selection Operator)
26.65.1 Key Feature

LASSO scales well with number of parameters p:
e statistical error

e computational cost

26.65.2 Setup

e Feature matrix: X is standardized so that column mean is 0 and variance is 1, i.e., Z?:l Xij =0,

1 )
ﬁzi:lX%:L forj=1,...,p

e Response: Y, > | Y; =0
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26.65.3 Loss Function
A 1
By = argmingQx(8),  where Qx(8) = —[[Y = XB|13 + |5l|x

Dual form: 1
in —IY — X3l
argmin omn I Bllz

s.t. [18]]1 < t, for some ¢

The L4 loss function is more like a ellipse, where the L; ball has corners, where most components are exactly
zero, which means LASSO will give sparse solutions.

B, A

The loss functions is in red curve and the constraint is in blue. The constraint in each quadrant is a linear
function, and formulate a diamond shape. The area of blue diamond is {3 : [|3]|1 < t}. 3 is the unconstrained
optimum, where g is the constrained optimum which gives §; = 0.

26.65.3.1 Sparse Solutions

Any form {3 : E?Zl 18|17 < t} for ¢ < 1 will have corners. When ¢ > 1, then corner points will become
smooth. g = 1 is the only convex constraint set.

26.65.4 Convex Optimization (Revisited)

Given a optimization problem
argmin  f(x)
s.t. gi(z) <0,h;(z) =0

The KKT conditions for the Lagrange function L(z, A\, v) = f(2) + 32, \igi(z) + >_; vjh;(x) is
1. 0=V L(z,\v)
2. Nigi(z) =0
3. gi(z) <0, A\ >0, hj(z)=0

KKT conditions cannot directly be applied to LASSO, we need to introduce the subgradient

Fy) = fl@) + V@) (y - o)
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26.65.4.1 Subgradient

Of(x) = {v: ¥y, f(y) = f(2) +v" (y — 2)}

if f is differentiable at z, then 0f(z) = {Vf(z)}.

x* = argminf(z) <= Yy, f(y) > f(z*) <= f(y) > f(@*) +0(y — z) <= 0 € 9f(2*). Then KKT(1) now
becomes 0 € 9, L(x, A, v).

Back to the loss fucntion of LASSO:

Qs 1 Qa(8) = —— IV — XBI + A8

2n
The subdifferential of the L norm is
aHle = {U eERP: ||U||OO < 17U5(w) = Sgn(xs(w))}

where s(z) = {j € {1,...,p};z; # 0} The subdifferential of the @\ at some vector 5 € R? is
1
IQx = {=XT(Y = XT8) + Av: v € 0|11}

ie for j=1,...,p, v; = sgn(B;) if B; # 0 otherwise v; € [—1,1].
Then KKT(1) becomes:

0€dQA(BY) = T s.t. v = sgn(Bfﬁj) if Bf] #0, and v; € [—1,1], otherwise
1 .
s.t. EXT(Y — XTpLy = X0

This is referred as the KKT condition for the LASSO.



