Chapter 1: Review of Matrix Theory
 Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Vector Space (Linear Space)

1. Euclidean Space

In Euclidean space \mathbb{R}^{p}, given a vector $x=\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in \mathbb{R}^{p}, y=\left(y_{1}, y_{2}, \ldots, y_{p}\right) \in \mathbb{R}^{p}$, the vector operations are defined as

$$
\begin{gathered}
x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{p}+y_{p}\right) \\
c \cdot x=\left(c x_{1}, c x_{2}, \ldots, c x_{p}\right)
\end{gathered}
$$

2. Inner Product

The inner product of two vectors is defined as

$$
<x, y>_{A}=x^{T} A y
$$

where A is symmetric and positive definite. The norm of vectors

$$
\|x\|_{A}=\sqrt{<x, x>_{A}}=\sqrt{x^{T} A x}
$$

Examples: 1. $A=I ; 2 . A=\Sigma$ (covariance matrix) ; 3. $A=\Sigma^{-1}$

3. Angle between vectors:

$$
\cos \left(\alpha_{x y}\right)=\frac{<x, y>}{\|x\|\|y\|}
$$

Cauchy-Schwartz inequality:

$$
|<x, y>| \leq\|x\| \cdot\|y\|
$$

4. Column space of a matrix:

Given a matrix $V_{p \times q}=\left(v_{1}, v_{2}, \ldots, v_{q}\right)$, the column space is defined as

$$
\mathcal{L}_{c o l}(\mathrm{~V})=\left\{w: w=\sum_{i=1}^{q} v_{i} c_{i}\right\}=\{w=\mathrm{V} c\}
$$

5. Orthogonal basis:

Assume $v_{1}, v_{2}, \ldots, v_{q}$ are linearly independent, then we can always find an orthogonal set $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{q}\right), \gamma_{i} \in$ \mathbb{R}^{p}, s.t. $\mathrm{V}=\Gamma C_{q \times q}$, where C is invertible.
6. Orthogonal space (null space):

$$
\mathcal{L}_{c o l}^{\perp}(\mathrm{V})=\left\{w:<w, v_{i}>=0, i=1,2, \ldots, q\right\}=\left\{w:<w, v>=0, \forall v \in \mathcal{L}_{c o l}(\mathrm{~V})\right\}
$$

For Euclidean space, $\mathcal{L}_{\text {col }}^{\perp}(\mathrm{V})=\left\{w: w^{T} \mathrm{~V}=0\right\}$.

Theorem 1.1 Let $X_{p \times r}=\left(x_{1}, \ldots, x_{r}\right)$, then $\mathcal{L}_{\text {col }}(\mathrm{X})=\mathcal{L}_{\text {col }}\left(\mathrm{X} X^{T}\right)$.
Proof:
(1) $\mathcal{L}_{\text {col }}\left(\mathrm{XX}^{T}\right) \subseteq \mathcal{L}_{\text {col }}(\mathrm{X})$
(2) $\mathcal{L}_{\text {col }}(\mathrm{X}) \subseteq \mathcal{L}_{\text {col }}\left(\mathrm{X} X^{T}\right) \Leftrightarrow \mathcal{L}_{\text {col }}^{\perp}\left(\mathrm{X} X^{T}\right) \subseteq \mathcal{L}_{\text {col }}^{\perp}(\mathrm{X})$

For $\forall w \in \mathcal{L}_{\text {col }}^{\perp}\left(\mathrm{X} X^{T}\right), w^{T} x x^{T}=0 \Rightarrow w^{T} x x^{T} w=0 \Rightarrow w^{T} x=0$.

1.2 Rank of a Matrix

Definition $1.2 \operatorname{rank}\left(X_{p \times r}\right)=\operatorname{dim} \mathcal{L}_{\text {col }}(\mathrm{X})$

Facts:

(1) $\operatorname{rank}(X)=\operatorname{rank}\left(X^{T}\right)$
(2) Suppose $B_{p \times p}, C_{q \times q}$ are both nonsingular, then $\operatorname{rank}(B X C)=\operatorname{rank}(X)$.
(3) $\operatorname{rank}\left(X X^{T}\right)=\operatorname{rank}(X)=\operatorname{rank}\left(X^{T} X\right)$

Remark: Let $X=\left(\begin{array}{c}v_{1}^{T} \\ \vdots \\ v_{p}^{T}\end{array}\right)$, then $G=X X^{T}=\left(v_{i}^{T} v_{j}\right)_{i j}$ is called "Gram Matrix".

1.3 Random Vectors

Given probability space $\mathcal{L}^{2}(\Omega, \mathcal{F}, \mathrm{P}), z_{i}, z_{j} \in \mathcal{L}^{2}$ (square integrable), $E\left[\left|z_{i} z_{j}\right|\right]<\infty, z=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{p}\end{array}\right)$.

- Covariance matrix: $\Sigma=\operatorname{Cov}(z, z) \Leftrightarrow \Sigma_{i j}=\sigma_{i j}=\operatorname{Cov}\left(z_{i}, z_{j}\right)$.
- Linear functions: $x \in \mathbb{R}^{p}, \mathcal{X}=x^{T} z=\sum_{i=1}^{p} x_{i} z_{i}$.
- Inner product: $\langle\mathcal{X}, \mathcal{Y}\rangle=\operatorname{Cov}(\mathcal{X}, \mathcal{Y})=x^{T} \Sigma y$, where $\mathcal{X}=x^{T} z, \mathcal{Y}=y^{T} z$, and x, y are constant vectors.

Recall that: 1. $\operatorname{Cov}\left(a z_{1}, z_{2}\right)=a \operatorname{Cov}\left(z_{1}, z_{2}\right) ; 2 \cdot \operatorname{Cov}\left(z_{1}+z_{2}, z_{3}\right)=\operatorname{Cov}\left(z_{1}, z_{3}\right)+\operatorname{Cov}\left(z_{2}, z_{3}\right)$

- Length: $\|\mathcal{X}\|=\sqrt{<\mathcal{X}, \mathcal{X}>}=\sqrt{x^{T} \Sigma x}$
- Angle: $\alpha_{\mathcal{X} \mathcal{Y}}=\cos ^{-1}\left(\frac{\langle\mathcal{X}, \mathcal{Y}\rangle}{\|\mathcal{X}\| \cdot\|\mathcal{Y}\|}\right)$

Remark: z takes value in \mathbb{R}^{p}, it is possible that z takes value in a subspace of \mathbb{R}^{p}.

Example: Suppose $z \sim \operatorname{multinomial}(n, \pi) / n, z_{i} \in[0,1]$, and $\pi=\left(\pi_{1}, \ldots, \pi_{p}\right)$ is the probability, i.e. $\pi_{1}+\ldots+\pi_{p}=1$.

1. What is the Σ of z ?
2. $\mathbf{1} \in \mathcal{L}_{\text {col }}^{\perp}(\Sigma)$.

Georgia Tech

Chapter 2: Projections

Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

2.4 Projection

Suppose $V_{n \times p}=\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ is of rank $p<n$. For $\forall y \in \mathbb{R}^{n}$, we want to decompose y into $y=\hat{y}+y^{\perp}$, where $\hat{y} \in \mathcal{L}_{\text {col }}(V), y^{\perp} \in \mathcal{L}_{\text {col }}^{\perp}(V)$.

$$
\begin{gathered}
\hat{y}=V \hat{\beta}=\sum_{i=1}^{p} \hat{\beta}_{i} v_{i}, \hat{\beta} \in \mathbb{R}^{p} \\
V^{T} y=V^{T} \hat{y}+V^{T} y^{\perp}=V^{T} \hat{y}=V^{T} V \hat{\beta} \Rightarrow \hat{\beta}=\left(V^{T} V\right)^{-1} V^{T} y
\end{gathered}
$$

which is the linear regression estimator.

$$
\hat{y}=V \hat{\beta}=V\left(V^{T} V\right)^{-1} V^{T} y=\hat{P} y
$$

we call $\hat{P}=V\left(V^{T} V\right)^{-1} V^{T}$ projection matrix.

$$
y^{\perp}=y-\hat{y}=(I-\hat{P}) y \Rightarrow P^{\perp}:=I-\hat{P}
$$

Hence \hat{P} is the projection matrix into $\mathcal{L}_{\text {col }}(V), P^{\perp}$ is the projection matrix into $\mathcal{L}_{\text {col }}\left(V^{\perp}\right)$.
Properties of projection matrix:
(i) \hat{P} and P^{\perp} are symmetric;
(ii) $\hat{P}^{2}=\hat{P} \cdot \hat{P}=\hat{P}$;
(iii) $\mathcal{L}_{\text {col }}(\hat{P})=\mathcal{L}_{\text {col }}(V)$;
(iv) $\operatorname{rank}(\hat{P})=\mathrm{p}, \operatorname{rank}\left(P^{\perp}\right)=\mathrm{n}-\mathrm{p}$;
(v) $\hat{y}^{T} y^{\perp}=0 \Leftrightarrow<\hat{y}, y^{\perp}>=0$;
(vi) $\|\hat{y}\|^{2}=y^{T} \hat{P} y,\left\|y^{\perp}\right\|^{2}=y^{T} P^{\perp} y \Rightarrow\|y\|^{2}=\|\hat{y}\|^{2}+\left\|y^{\perp}\right\|^{2}$;
(vii) $\cos ^{2}\left(\alpha_{y, \hat{y}}\right)=\frac{\|\hat{y}\|^{2}}{\|y\|^{2}}=\frac{y^{T} \hat{P} y}{y^{T} y}, \alpha_{y, \hat{y}}=\min \left\{\alpha_{y, w}: \forall w \in \mathcal{L}_{c o l}(V)\right\}$.
(viii) Eigenvalues of \hat{P} are either 0 or 1 .
-Geometrical intuition: An eigenvector of projection matrix, with nonzero eigenvalue, is in the column space of this projection matrix both before and after the transformation. The projection matrix \hat{P} project every vector into $\mathcal{L}_{\text {col }}(\hat{P})$. The only vectors that are still in their original column space after being projected into $\mathcal{L}_{\text {col }}(\hat{P})$ are those which are already in $\mathcal{L}_{\text {col }}(\hat{P})$, with eigenvalue $=1$ since their lengths do not change. For vectors in $\mathcal{L}_{\text {col }}\left(\hat{P}^{\perp}\right)$ are also the eigenvectors of \hat{P} since after projection they become a dot in $\mathcal{L}_{\text {col }}\left(\hat{P}^{\perp}\right)$, with eigenvalue $=0$.
In other words, if $w \in \mathcal{L}_{c o l}(\hat{P})$ then $\hat{P} w=w$. If $w \in \mathcal{L}_{c o l}\left(\hat{P}^{\perp}\right)$ then $\hat{P} w=0$.
-Mathematical proof: Note that $\hat{P}^{2}=\hat{P}$ and therefore $\forall v$:

$$
\lambda^{2} v=\hat{P}(\lambda v)=\hat{P}(\hat{P} v)=\hat{P} v=\lambda v \Rightarrow \lambda^{2}=\lambda \Rightarrow \lambda=0 \quad \text { or } \quad 1
$$

(ix) $V_{n \times p}=\left(v_{1}, v_{2}, \ldots, v_{n}\right), \Gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ where γ_{i} are all orthogonal to each other with $\mathcal{L}_{\text {col }}(V)=$ $\mathcal{L}_{\text {col }}(\Gamma)$ Porjection matrix is $\hat{P}=V\left(V^{\top} V\right)^{-1} V^{\top}=\Gamma \Gamma^{\top}$. Also when $p<n$ we have $\Gamma \Gamma^{\top} \neq I$.

2.5 Projection matrix in a general metric

We define $\langle y, v\rangle_{A}=y^{\top} A v$. Vector y can be written as $y=\hat{y}+y^{\perp}$. Then \hat{y} can be written as $\hat{y}=V \hat{\beta}$.

$$
\langle y, v\rangle=\langle\hat{y}, v\rangle+\left\langle y^{\perp}, v\right\rangle=\langle\hat{y}, v\rangle \Rightarrow V^{\top} A y=V^{\top} A V \hat{\beta} \Rightarrow \hat{\beta}=\left(V^{\top} A V\right)^{-1} V^{\top} A y
$$

Thus we get,

$$
\hat{y}=V \hat{\beta}=V\left(V^{\top} A V\right)^{-1} V^{\top} A y=V\langle V, V\rangle^{-1}\langle V, y\rangle
$$

Exercise: Verify the Pythagorean theorem:

$$
\|y\|^{2}=\|\hat{y}\|^{2}+\left\|y^{\perp}\right\|^{2}
$$

2.6 Linear Prediction

Assume Y to be a random variable and $V=\left(V_{1}, V_{2}, \ldots, V_{p}\right)$ where v_{i} is a random variable. Assume that $E[Y]=E\left[V_{i}\right]=0$. Define $\langle X, Y\rangle=\operatorname{cov}(X, Y)$.
How to find a linear prediction of of $\left(V_{1}, V_{2}, \ldots, V_{p}\right)$ such that best predict V ?
"Best": norm of residual is smallest \Rightarrow variance of residual is smallest, i.e., \hat{Y} should be the projection of Y on V.
According to the conclusion in Section 1.7,

$$
\hat{Y}=V\langle V, V\rangle^{-1}\langle V, Y\rangle=V \sigma_{V V}^{-1} \sigma_{V Y}
$$

Properties of Linear Prediction:

1. \hat{Y}, Y^{\perp} is uncorrelated since $\left\langle\hat{Y}, Y^{\perp}\right\rangle=0$ (The reverse direction is true as well).
2. $\operatorname{Var}(\hat{Y})=\langle\hat{Y}, \hat{Y}\rangle=\sigma_{Y V} \sigma_{V V}^{-1} \sigma_{V Y}$.

Proof: $\hat{Y}=\hat{\beta} V$ where $\hat{\beta}=\sigma_{Y V} \sigma_{V V}^{-1}$.
Then, $\operatorname{Var}(\hat{Y})=\operatorname{Var}(\hat{\beta} V)=\hat{\beta} \operatorname{Var}(V) \hat{\beta}^{T}=\sigma_{Y V} \sigma_{V V}^{-1} \operatorname{Var}(V) \sigma_{V V}^{-1} \sigma_{V Y}=\sigma_{Y V} \sigma_{V V}^{-1} \sigma_{V Y}$
Subsequently, $\operatorname{Var}\left(Y^{\perp}\right)=\operatorname{Var}(Y)-\operatorname{Var}(\hat{Y})=\sigma_{Y Y}-\sigma_{Y V} \sigma_{V V}^{-1} \sigma_{V Y}$
3. $\operatorname{Var}\left(Y^{\perp}\right)=\min _{\beta \in \mathbb{R}^{p}} \operatorname{Var}(Y-V \beta)$
4. $\frac{\operatorname{Var}(\hat{Y})}{\operatorname{Var}(Y)}=\frac{\sigma_{Y V} \sigma_{V V}^{-1} \sigma_{V Y}}{\sigma_{Y Y}}=\rho_{Y \mid V_{1}, V_{2}, \ldots, V_{p}}^{2}=R^{2} . R^{2}$ is the multiple correlation coefficient between Y and

2.7 Gram-Schimdt Orthogonalization

$V_{n \times p}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, denote: $V_{j}=\left(v_{1}, v_{2}, \ldots, v_{j}\right)$ and $P_{j}=V_{j}\left(V_{j}^{\top} V_{j}\right)^{-1} V_{j}^{\top}$
Algorithm:

- Let $W_{1}=V_{1} /\left\|V_{1}\right\|$
- $V_{2}^{\perp}=\left(I-\hat{P}_{1}\right) V_{2}, W_{2}=V_{2}^{\perp} /\left\|V_{2}^{\perp}\right\|$
- $V_{j}^{\perp}=\left(I-\hat{P}_{j-1}\right) V_{j}, W_{j}=V_{j}^{\perp} /\left\|V_{j}^{\perp}\right\|$
- $V_{p}^{\perp}=\left(I-\hat{P}_{p-1}\right) V_{p}, W_{p}=V_{p}^{\perp} /\left\|V_{p}^{\perp}\right\|$

Let's change the direction of expression

- $V_{1}=U_{11} W_{1}$
- $V_{2}=U_{12} W_{1}+U_{22} W_{2}$
- $V_{j}=U_{1 j} W_{1}+\ldots+U_{j j} W_{j}$
- $V_{p}=U_{1 p} W_{1}+\ldots+U_{p p} W_{p}$

$$
V=W U \Rightarrow \mathrm{QR} \text { Decomposition, where } W^{T} W=I_{p}, U_{p \times p} \text { upper triangle }
$$

2.8 Gram Matrix and Projection

Gram matrix: $G_{i j}=\left\langle x_{i}, x_{j}\right\rangle$
Assume

$$
V_{n \times\left(p_{1}+p_{2}\right)}=\left(V_{1}, V_{2}\right), \quad G=V^{T} V=\left(\begin{array}{ll}
V_{1}^{T} V_{1} & V_{1}^{T} V_{2} \\
V_{2}^{T} V_{1} & V_{2}^{T} V_{2}
\end{array}\right)=\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right)
$$

Let's consider the projection of V_{2} to V_{1}

$$
\begin{array}{cc}
\hat{P}_{1}=V_{1}\left(V_{1}^{T} V_{1}\right)^{-1} V_{1}^{T}=V_{1} G_{11}^{-1} V_{1}^{T} & P_{1}^{\perp}=I_{1}-\hat{P}_{1} \\
\hat{V}_{2}=\hat{P}_{1} V_{2}=V_{1} G_{11}^{-1} V_{1}^{T} V_{2}=V_{1} G_{11}^{-1} G_{12} & V_{2}^{\perp}=P_{1}^{\perp} V_{2}
\end{array}
$$

Then,

$$
\begin{gathered}
G_{22}=V_{2}^{T} V_{2}=\left(\hat{V}_{2}+V_{2}^{\perp}\right)^{T}\left(\hat{V}_{2}+V_{2}^{\perp}\right)=\hat{V}_{2}^{T} \hat{V}_{2}+\left(V_{2}^{\perp}\right)^{T} V_{2}^{\perp}=\left\langle\hat{V}_{2}, \hat{V}_{2}\right\rangle+\left\langle V_{2}^{\perp}, V_{2}^{\perp}\right\rangle \\
\hat{V}_{2}^{T} \hat{V}_{2}=\left(V_{2}-V_{2}^{\perp}\right)^{T} \hat{V}_{2}=V_{2}^{T} \hat{V}_{2}=V_{2}^{T} \hat{P}_{1} V_{2}=V_{2}^{T} V_{1} G_{11}^{-1} V_{1}^{T} V_{2}=G_{21} G_{11}^{-1} G_{12} \\
\left(V_{2}^{\perp}\right)^{T} V_{2}^{\perp}=G_{22}-G_{21} G_{11}^{-1} G_{12}
\end{gathered}
$$

2.8.1 Application to Linear Predictions

Assume $E\left[Y_{1}\right]=E\left[Y_{2}\right]=0, \operatorname{dim}\left(Y_{1}\right)=p_{1}$ and $\operatorname{dim}\left(Y_{2}\right)=p_{2}$, and we want to use Y_{1} (a group of random variables) to predict Y_{2} (another group of random variables):
$\Sigma=\left\langle\binom{ Y_{1}}{Y_{2}},\binom{Y_{1}}{Y_{2}}\right\rangle=\operatorname{Cov}\left(\binom{Y_{1}}{Y_{2}},\binom{Y_{1}}{Y_{2}}\right)=\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)_{\left(p_{1}+p_{2}\right) \times\left(p_{1}+p_{2}\right)}$
$\hat{Y}_{2}=\Sigma_{21} \Sigma_{11}^{-1} Y_{1} \quad Y_{2}^{\perp}=Y_{2}-\hat{Y}_{2}$
$\Sigma_{22}^{\perp}=\operatorname{Cov}\left(Y_{2}^{\perp}\right)=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$, partial covariance matrix of Y_{2} after linear regression on Y_{1}

Chapter 3: Determinants \& Jacobians
 Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

3.9 Determinants

Definition 3.3 Given a square matrix $A_{p \times p}=\left(\begin{array}{ccc}\vdots & & \vdots \\ a_{1} & \cdots & a_{p} \\ \vdots & & \vdots\end{array}\right)$, the determinant of A is

$$
\operatorname{det}(A)=|A|=\sum_{\pi} \operatorname{sgn}(\pi) A_{1 \pi(1)} A_{2 \pi(2)} \cdots A_{p \pi(p)}
$$

where π denotes all possible permutations.

3.9.1 Properties of determinants

1. For any upper triangular matrix $U_{p \times p},\left|U_{p \times p}\right|=\prod_{i=1}^{n} u_{i i}$
2. $\left|A^{T}\right|=|A|$
3. $\left|\begin{array}{cccccc}\vdots & \vdots & & \vdots & & \vdots \\ a_{1} & a_{2} & \cdots & c \cdot a_{j} & \cdots & a_{p} \\ \vdots & \vdots & & \vdots & & \vdots\end{array}\right|=c|A|,|c A|=c^{p}|A|$
4. $\left|\begin{array}{cccccccc}\vdots & \vdots & & \vdots & & \vdots & & \vdots \\ a_{1} & a_{2} & \cdots & a_{j} & \cdots & a_{i} & \cdots & a_{p} \\ \vdots & \vdots & & \vdots & & \vdots & & \vdots\end{array}\right|=-|A|$, where $i<j$, swap a_{i} and a_{j}
5. $\left|\begin{array}{ccccccc}\vdots & & \vdots & & \vdots & & \vdots \\ a_{1} & \cdots & a_{i}+a_{j} & \cdots & a_{j} & \cdots & a_{p} \\ \vdots & & \vdots & & \vdots & & \vdots\end{array}\right|=|A|$
6. $\left|A_{p \times p} B_{p \times p}\right|=|A||B| \Rightarrow\left|A^{-1}\right|=\frac{1}{|A|}$; if A is an orthogonal matrix, $A^{T} A=I \Rightarrow|A|= \pm 1$
7. $\left|A_{p \times p}\right|=0$ if and only if $\operatorname{rank}(A)<p$
8. $\left|\begin{array}{cc}A_{p \times p} & 0 \\ C_{q \times p} & D_{q \times q}\end{array}\right|=|A| \cdot|D|$
9. $\left|\begin{array}{cc}A_{p \times p} & B_{p \times q} \\ C_{q \times p} & D_{q \times q}\end{array}\right|=\left\{\begin{array}{c}|D| \cdot\left|A-B D^{-1} C\right|, \text { if } \operatorname{rank}(D)=q \\ |A| \cdot\left|D-C A^{-1} B\right|, \text { if } \operatorname{rank}(A)=p\end{array}\right.$

Proof:

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
A-B D^{-1} C & B \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I_{p} & 0 \\
D^{-1} C & I_{q}
\end{array}\right)
$$

10. $\left|I_{p}+A_{p \times{ }_{q}} B_{q \times p}\right|=\left|I_{q}+B_{q \times p} A_{p \times q}\right|$

Proof: Apply property 9 to

$$
\left|\begin{array}{cc}
I_{p} & -A_{p \times q} \\
B_{q \times p} & I_{q}
\end{array}\right|
$$

(Exercise)

$$
\left|\begin{array}{cccc}
1 & \rho & \cdots & \rho \\
\rho & 1 & \cdots & \rho \\
\vdots & \vdots & \ddots & \vdots \\
\rho & \rho & \cdots & 1
\end{array}\right|=(1-\rho)^{n-1}[1+(n-1) \rho]
$$

3.9.2 Geometric Interpretation of Determinant

Recall

$$
\operatorname{det}(A)=|A|, \quad A=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
a_{1} & a_{2} & \cdots & a_{p} \\
\vdots & \vdots & & \vdots
\end{array}\right)_{p \times p}
$$

Geometric meaning:

$|\operatorname{det}(A)|=p$-dimensional volume of the parallelogram consisting of $\left\{\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \cdots, \overrightarrow{a_{p}}\right\}$
Example: Consider

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
\vdots & \vdots \\
a_{1} & a_{2} \\
\vdots & \vdots
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right) \\
|A| & =3
\end{aligned}
$$

The change in volume is shown in Figure 3.1.

QR Decomposition:

$A=W U$, where W is orthogonal basis, U is upper triangular.

$$
|A|=|W||U|= \pm|U|= \pm \prod_{i=1}^{p} u_{i i}
$$

Figure 3.1: $\operatorname{det}(A)=3$

Figure 3.2: $\left|a_{1}, a_{2}\right|=\left|a_{1}, a_{1}+a_{2}\right|$

Example. $\forall a_{1}, a_{2} \in \mathbb{R}^{2},\left|a_{1}, a_{2}\right|=\left|a_{1}, a_{1}+a_{2}\right|$. Geometric interpretation as shown in Figure 3.2: Red Area = Blue Area

3.10 Jacobian

Motivation for Jacobian: Suppose random variable X has density function $f(x)$. $\tilde{X}=m(X)$, where m is a 1-1 map from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. What's the density function $\tilde{f}(\tilde{\mathbf{x}})$ for \tilde{X} ?
Definition 3.4 Suppose $\tilde{X}=m(X)$, where m is a 1-1 map from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

$$
\begin{aligned}
M(X) & =\left(\frac{\partial \tilde{x_{i}}}{\partial x_{j}}\right)_{i j} \\
M^{-1}(X) & =\left(\frac{\partial x_{i}}{\partial \tilde{x_{j}}}\right)_{i j}
\end{aligned}
$$

Jacobian

$$
J(X \rightarrow \tilde{X})=\left|\operatorname{det}\left(M^{-1}(X)\right)\right|=\left|\operatorname{det}\left(\frac{\partial x_{i}}{\partial \tilde{x_{j}}}\right)\right|
$$

Then, for our problem in random variable

$$
\tilde{f}(\tilde{\mathbf{x}})=f(\mathbf{x}) \cdot J(X \rightarrow \tilde{X})
$$

3.10.1 Intuitive Sense: why use Jacobian (determinant)?

Example. Consider $n=2$ as shown in Figure 3.3, where

$$
\begin{aligned}
& \overrightarrow{e_{1}}=(1,0) \quad \overrightarrow{e_{2}}=(0,1) \\
& d \mathbf{x}=\left(d x_{1}, d x_{2}\right) \\
& M=\left(\overrightarrow{M_{1}}, \overrightarrow{M_{2}}\right)=\left(\begin{array}{cc}
\frac{\partial \tilde{x_{1}}}{\partial x_{1}} & \frac{\partial \tilde{x_{1}}}{\partial x_{2}} \\
\frac{\partial x_{1}}{\partial x_{1}} & \frac{\partial x_{2}}{\partial x_{2}}
\end{array}\right) \\
& M\left(\mathbf{x}+\overrightarrow{e_{1} d x_{1}}\right) \approx \tilde{\mathbf{x}}+\vec{M}_{1} d x_{1}+o\left(d x_{1}\right) \quad \text { by Taylor Expansion } \\
& \operatorname{Vol}(\tilde{A})=\operatorname{det}\left(\begin{array}{cc}
\vdots & \vdots \\
M_{1} d x_{1} & M_{2} d x_{2} \\
\vdots & \vdots
\end{array}\right)=\left(\prod_{i=1}^{n} d x_{i}\right) \cdot|\operatorname{det}(M)|
\end{aligned}
$$

Probability mass:

$$
\begin{gathered}
\qquad f(\mathbf{x}) \operatorname{Vol}(A)=\tilde{f}(\tilde{\mathbf{x}}) \operatorname{Vol}(\tilde{A}) \\
\Rightarrow \tilde{f}(\tilde{\mathbf{x}})=f(\mathbf{x}) \cdot \frac{\operatorname{Vol}(A)}{\operatorname{Vol}(\tilde{A})} \\
\operatorname{Vol}(\tilde{A})=\operatorname{det}\left(M_{1} d x_{1}, M_{2} d x_{2}\right)=\left(\Pi_{i=1}^{n} d x_{i}\right) \cdot|\operatorname{det}(M)|=\operatorname{Vol}(A) \cdot|\operatorname{det}(M)| \\
\Rightarrow \tilde{f}(\tilde{\mathbf{x}})=f(\mathbf{x}) \cdot \frac{1}{|\operatorname{det}(M)|}=f(\mathbf{x}) \cdot \operatorname{det}\left(M^{-1}\right)
\end{gathered}
$$

Figure 3.3: $\mathrm{n}=2$

Example. 1-d space (n-d space):

$$
\begin{array}{r}
\int \tilde{f}(\tilde{x})|d \tilde{x}|=\int f(x)|d x| \\
\Leftrightarrow \tilde{f}(\tilde{x})|d \tilde{x}|=f(x)|d x| \\
\quad \Leftrightarrow \tilde{f}(\tilde{x})=f(x) \frac{|d x|}{|d \tilde{x}|}
\end{array}
$$

Classical Example. Polar system.

Figure 3.4: Polar coordinates

Figure 3.5: Polar to Cartesian

$$
\begin{aligned}
& x_{1}=\rho \cos \theta_{1} \\
& x_{2}=\rho \sin \theta_{1} \cos \theta_{2} \\
& \quad \vdots \\
& x_{n-1}=\rho \sin \theta_{1} \cos \theta_{2} \cdots \sin \theta_{n-1} \cos \theta_{n-1} \\
& x_{n}=\rho \sin \theta_{1} \cdots \sin \theta_{n-1}
\end{aligned}
$$

where $\rho \geq 0,0 \leq \theta_{i} \leq \pi, \theta_{n-1} \in[0,2 \pi]$.
Calculate: $J\left(X \rightarrow\left(\rho, \theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)\right)=\rho^{n-1} \sin ^{n-2} \theta_{1} \sin ^{n-3} \theta_{2} \cdots \sin \theta_{n-2}$
Proof: Math induction on $J_{n}=\rho \sin ^{n-2} \theta_{1} J_{n-1}$

3.11 Integral Jacobian: $X \xrightarrow{m} \tilde{X}$

Example (Motivation) $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} f(x)$, what is the density of :
(1) $x_{1}+x_{2}+\ldots+x_{n}$
(2) $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}$
(3) Other many to one mapping

Definition 3.5 $X \xrightarrow{m} Y_{1}$. We can find Y_{2}, such that the mapping $X \rightarrow\left(Y_{1}, Y_{2}\right)$ is one-to-one. The integral Jacobian of $X \rightarrow Y_{1}$ is defined as

$$
J\left(X \rightarrow Y_{1}\right)=\int_{y_{2}} J\left(X \rightarrow\left(Y_{1}, y_{2}\right)\right) d y_{2}
$$

Lemma 3.6

$$
J\left(X \rightarrow Y_{1}\right)=\lim _{d y_{1} \rightarrow 0} \frac{\operatorname{Vol}\left(m^{-1}\left(\left[y_{1}, y_{1}+d y_{1}\right]\right)\right)}{\operatorname{Vol}\left(\left[y_{1}, y_{1}+d y_{1}\right]\right)}
$$

Example. Suppose $Y_{1}=m(X), X$ is 2-dimensional $(n=2)$, and Y_{1} is scalar. (See Figure 3.6)

$$
\begin{aligned}
\tilde{A} & =\left\{\left(\tilde{y_{1}}, \tilde{y_{2}}\right): \tilde{y_{1}} \in\left[y_{1}, y_{1}+d y_{1}\right]\right\} \\
A & =\left\{x: m(x) \in\left[y_{1}, y_{1}+d y_{1}\right]\right\}=m^{-1}(\tilde{A}) \Leftrightarrow \tilde{A}=m(A) \\
\text { Jacobian } & =\lim _{d y_{1} \rightarrow 0} \frac{\operatorname{Vol}(A)}{\operatorname{Vol}(\tilde{A})}=\lim _{d y_{1} \rightarrow 0} \frac{\operatorname{Vol}\left(m^{-1}\left(\left[y_{1}, y_{1}+d y_{1}\right]\right)\right)}{\operatorname{Vol}\left(\left[y_{1}, y_{1}+d y_{1}\right]\right)}
\end{aligned}
$$

Lemma 3.7 Suppose $X \xrightarrow{m} Y_{1}, X$ has density $f^{X}(x)=g \circ m(x)=g(m(x))=g\left(y_{1}\right)$. Then the density function of Y_{1} is

$$
f^{Y_{1}}\left(y_{1}\right)=g\left(y_{1}\right) J\left(X \rightarrow y_{1}\right)
$$

Example. $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} \mathcal{N}(0,1), \rho=\sqrt{X_{1}^{2}+\ldots+X_{n}^{2}}$, what's density of ρ ?

Solution.

Figure 3.6:

$$
\begin{aligned}
f^{X}(x) & =\prod_{i=1}^{n}\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x_{i}^{2}}\right) \\
& =\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} e^{-\frac{1}{2} \sum x_{i}^{2}} \\
& =(2 \pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \rho^{2}}
\end{aligned}
$$

From lemma, we have

$$
f^{\rho}(\rho)=(2 \pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \rho^{2}} J(X \rightarrow \rho)
$$

Using polar system, we can show that

$$
\begin{aligned}
J(X \rightarrow \rho) & =\int J\left(X \rightarrow\left(\rho, \theta_{1}, \cdots, \theta_{n-1}\right)\right) d \theta_{1} \cdots d \theta_{n-1} \\
& =\rho^{n-1} \frac{2 \pi^{n / 2}}{\Gamma(n / 2)}
\end{aligned}
$$

So,

$$
f^{\rho}(\rho)=\frac{\rho^{n-1} e^{-\frac{1}{2} \rho^{2}}}{2^{\frac{n}{2}-1} \Gamma(n / 2)} \sim \chi_{n}
$$

Proof: (of Lemma 3.7)

Consider $X \rightarrow\binom{Y_{1}}{Y_{2}}$ such that it is one-to-one. By definition,

$$
\begin{aligned}
f^{Y_{1}}\left(y_{1}\right) & =\int f^{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) d y_{2} \\
& =\int f^{X}(x) J\left(X \rightarrow\left(y_{1}, y_{2}\right)\right) d y_{2} \\
& =\int g(m(x)) J\left(X \rightarrow\left(y_{1}, y_{2}\right)\right) d y_{2} \\
& =\int g\left(y_{1}\right) J\left(X \rightarrow\left(y_{1}, y_{2}\right)\right) d y_{2} \\
& =g\left(y_{1}\right) \int J\left(X \rightarrow\left(y_{1}, y_{2}\right)\right) d y_{2} \\
& =g\left(y_{1}\right) J\left(X \rightarrow\left(y_{1}\right)\right.
\end{aligned}
$$

Remark: In one-to-one mapping of m,

$$
f^{Y_{1}}\left(y_{1}\right)=f^{X}\left(m^{-1}\left(y_{1}\right)\right) J\left(X \rightarrow y_{1}\right)
$$

Trick: Reverse Lemma 3.7 to find Jacobian.

$$
J\left(X \rightarrow Y_{1}\right)=\frac{f^{Y_{1}}\left(y_{1}\right)}{f^{X}(x)}
$$

provided that $f^{X}(x)=g\left(y_{1}\right)$.
Example. $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right), m:\left(\mathbb{R}^{+}\right)^{n} \rightarrow \mathbb{R}^{+}$maps X to $S=\sum_{i=1}^{n} X_{i}$. . What is $J(X \rightarrow S)$?
Solution. Reverse Lemma 3.7. Consider $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \exp (1), f(x)=e^{-x}$. Then, $S=X_{1}+X_{2}+$ $\cdots+X_{n} \sim \Gamma(n, 1)$.

$$
\begin{aligned}
f^{S}(s) & =\frac{1}{\Gamma(n)} s^{n-1} e^{-s} \\
f^{X}(x) & =\Pi_{i=1}^{n} e^{-x_{i}}=e^{-\sum_{i=1}^{n} x_{i}}=e^{-s} \\
J(X \rightarrow S) & =\frac{f^{S}(s)}{f^{X}(x)}=\frac{s^{n-1}}{\Gamma(n)}
\end{aligned}
$$

Lemma 3.8 Chain rule of Integral Jacobian. If $X \xrightarrow{1-1}\left(Y_{1}, Y_{2}\right), Y \xrightarrow{1-1}\left(Z_{1}, Z_{2}\right)$, then $J\left(X \rightarrow Z_{1}\right)=$ $J\left(X \rightarrow Y_{1}\right) \cdot J\left(Y_{1} \rightarrow Z_{1}\right)$.

Proof: Consider $X \xrightarrow{1-1}\left(Z_{1}, Z_{2}, Y_{2}\right)$. Using definition,

$$
\begin{aligned}
J\left(X \rightarrow Z_{1}\right) & =\iint J\left(X \rightarrow\left(Z_{1}, z_{2}, y_{2}\right)\right) d z_{2} d y_{2} \\
J\left(X \rightarrow Y_{1}\right) & =\int J\left(X \rightarrow\left(Y_{1}, y_{2}\right)\right) d y_{2} \\
J\left(Y_{1} \rightarrow Z_{1}\right) & =\int J\left(Y_{1} \rightarrow\left(Z_{1}, z_{2}\right)\right) d z_{2} \\
J\left(X \rightarrow Y_{1}\right) \cdot J\left(Y_{1} \rightarrow Z_{1}\right) & =\iint J\left(X \rightarrow\left(Y_{1}, y_{2}\right) J\left(Y_{1} \rightarrow\left(Z_{1}, z_{2}\right)\right) d z_{2} d y_{2}\right. \\
& =\iint J\left(X \rightarrow\left(Z_{1}, z_{2}, y_{2}\right)\right) d z_{2} d y_{2} \\
& =J\left(X \rightarrow Z_{1}\right)
\end{aligned}
$$

where the second last equality is using standard chain rule for Jacobian.
Remark: We can also use Lemma 3.6 with the intuition that as $d z_{1} \rightarrow 0, d y_{1} \rightarrow 0$.

$$
J\left(X \rightarrow Z_{1}\right)=\lim _{z_{1} \rightarrow 0} \frac{\operatorname{Vol}(B)}{\operatorname{Vol}(\tilde{A})}=\lim _{y_{1} \rightarrow 0} \frac{\operatorname{Vol}(A)}{\operatorname{Vol}(\tilde{A})} \lim _{z_{1} \rightarrow 0} \frac{\operatorname{Vol}(B)}{\operatorname{Vol}(A)}
$$

Lemma 3.9 (Hsu's Lemma) $X_{n \times p} \xrightarrow{m} S_{p \times p}=X^{T} X$.

$$
J(X \rightarrow S)=\frac{\pi^{\frac{n p}{2}-\frac{p^{2}}{4}+\frac{p}{4}}}{\prod_{j=1}^{p} \Gamma\left(\frac{n-j+1}{2}\right)}|\operatorname{det}(S)|^{\frac{n-p+1}{2}}
$$

Proof: Use the trick of inverting Lemma 3.7.

3.12 Spectral Decomposition (Eigendecomposition)

Suppose $A_{p \times p}$ is a real-valued, symmetric with rank K. Then A can always be decomposed as

$$
A_{p \times p}=\Gamma_{p \times k} \Lambda \Gamma_{k \times p}^{T}
$$

where $\Gamma=\left(\begin{array}{cccc}\vdots & \vdots & & \vdots \\ r_{1} & r_{2} & \ldots & r_{k} \\ \vdots & \vdots & & \vdots\end{array}\right)$ is orthogonal matrix $\Gamma^{T} \Gamma=I_{k}$
$\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{k}\right)$, where $\lambda_{i} \neq 0(i=1,2, \cdots k)$
We can find Eigenvalues $\left(\lambda_{i}\right)$ and Eigenvectors $\left(\rho_{i}\right)$ as follows.

$$
A \Gamma=\left(\Gamma \Lambda \Gamma^{T}\right) \Gamma=\Gamma \Lambda \Leftrightarrow A \rho_{i}=\lambda_{i} \rho_{i}
$$

, where $i=1,2, \cdots k$. Also, we can know $\mathcal{L}_{\text {col }}(A)=\mathcal{L}_{\text {col }}(\Gamma)$

3.13 Trace of matrix

Trace of $p \times p$ matrix B is defined as

$$
\operatorname{tr}(B)=\sum_{i=1}^{p} B_{i i}
$$

Based on the definition of the trace matrix, we can swap the order of matrix multiplication as below.

$$
\operatorname{tr}\left(A_{p \times q} B_{q \times p}\right)=\operatorname{tr}\left(B_{q \times p} A_{p \times q}\right)=\sum_{i} \sum_{j} A_{i j} B_{j i}
$$

Suppose A is symmetric, we can calculate the spectral sum by using the trace property

$$
\operatorname{tr}(A)=\operatorname{tr}\left(\Gamma \Lambda \Gamma^{T}\right)=\operatorname{tr}\left(\Gamma^{T} \Gamma \Lambda\right)=\operatorname{tr}(\Lambda)=\sum_{i}^{k} \lambda_{i}
$$

Special case: Suppose $P_{n \times n}$ is a projection matrix into $k-\operatorname{dim}$ linear space. $(\operatorname{tr}(P)=k)$

1. k-dimensional linear space $=\mathcal{L}_{\text {col }}(X)$

$$
P=X\left(X^{T} X\right)^{-1} X^{T}
$$

QR decomposition on X, where $X=\Gamma_{p \times k} U$

$$
P=\Gamma \Gamma^{T} \rightarrow \operatorname{tr}(P)=\operatorname{tr}\left(\Gamma \Gamma^{T}\right)=\operatorname{tr}\left(\Gamma^{T} \Gamma\right)=\operatorname{tr}\left(I_{k}\right)=k
$$

2. P must have eigenvalues 0 or 1

3.14 Matrix square root

Let $S^{2}=A$, where A is positive semi-definite.
(1) Symmetric square root: Suppose $A_{p \times p}$ is symmetric positive semi-definite and $\operatorname{rank}(A)=k$, then the solution to $S^{2}=A$ is

1. $S_{p \times p}=\Gamma \Lambda^{\frac{1}{2}} \Gamma^{T}$, where $\Lambda^{\frac{1}{2}}=\operatorname{diag}\left(\sqrt{\lambda}_{1}, \sqrt{\lambda_{2}}, \cdots \sqrt{\lambda}{ }_{k}\right)$ or
2. $S_{k \times p}=\Lambda^{\frac{1}{2}} \Gamma^{T}$

We have $S^{T} S=\Gamma \Lambda \Gamma^{T}=A$ in both case. We can see S and A share eigenvectors and also have close relationship as for eigenvalues $\frac{1}{2}$
(2) Upper triangular square root: $U^{T} U=A_{p \times p}$

- $S=\Lambda^{\frac{1}{2}} \Gamma^{T}=W U$, where W is orthogonal
- $A=S^{T} S=U^{T} W^{T} W U=U^{T} U$

3.15 Singular Value Decomposition (SVD)

While spectral decomposition can be used only for square matrix, SVD can be used for any matrix.
For any $A_{n \times p}$ with rank $k, A_{n \times p}=U_{n \times k} D_{k \times k} V_{k \times p}^{T}$, where $U_{n \times k}, V_{p \times k}$ are orthogonal ($\Leftrightarrow U^{T} U=$ $I_{k} \quad V^{T} V=I_{k}$) and $D=\operatorname{diag}\left(d_{1}, d_{2} \cdots d_{k}\right)$, where $d_{i}>0$. Furthermore, we can arrange them such that $d_{1} \geq d_{2} \geq \cdots d_{k}$. Here, $d_{1} \cdots d_{k}$ are singular values, $U=\left(u_{1} \cdot u_{k}\right)_{n \times k}$ components are left singular vectors, $V=\left(v_{1} \cdot v_{k}\right)_{p \times k}$ components are right singular vectors.
U and V are not unique $(-U),(-V)$. So you can put a sign in any column of U and V
$\left(A A^{T}\right)_{n \times n}=\left(U D^{2} U^{T}\right)_{n \times n}$ and $\left(A^{T} A\right)_{p \times p}=\left(V D^{2} V^{T}\right)_{p \times p}$. Then we have d_{i}^{2} to be the eigenvalues of $A^{T} A$ or $A A^{T}$, which also explains that eigenvectors of $A^{T} A$ or $A A^{T}$ should be columns of U and V.

Proof: Let $A A^{T}$ is symmetric positive semi-definite. Spectral decomposition gives $A A^{T}=U \Lambda U^{T}$. Let $D=\Lambda^{\frac{1}{2}}$ and $V^{T}=D^{-1} U^{T} A$. Now we show U, D, V satisfy the requirements.

1. U is orthogonal
2. D is orthogonal
3. We have to check V is orthogonal.

$$
V^{T} V=D^{-1} U^{T} A A^{T} U D^{-1}=I_{k}
$$

4. $A=U D V^{T}=U D D^{T} U^{T} A=U U^{T} A=A$
$U U^{T}$ is the projection matrix onto $\mathcal{L}_{\text {col }}(U) \Leftrightarrow \mathcal{L}_{\text {col }}(U)=\mathcal{L}_{\text {col }}\left(A A^{T}\right)=\mathcal{L}_{\text {col }}(A)$. Then, $U U^{T} A=A$.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

5.16 Matrix Theory Review (continued)

5.16.1 Pseudo-inverse X^{-}(continued)

Pseudo-inverse can be applied to solving linear systems

$$
\eta=X \beta
$$

where it assumes $\eta \in \mathcal{L}_{\text {col }}(X)$.
Claim: $\beta_{0}=X^{-} \eta$ is a solution.
Verify: $X \beta_{0}=X X^{-} \eta=\eta$ because $X X^{-}$is the projection matrix into $\mathcal{L}_{\text {col }}(X)$.

* Exercise (in the case $n<p$): in the case of multiple solutions, β_{0} is the shortest solution in terms of the length $\|\beta\|$.
* What if $X \beta \approx y, y \notin \mathcal{L}_{\text {col }}(X), n \gg p$. (consider linear regression)

$$
\widehat{\beta}=X^{-} y=\left(X^{\top} X\right)^{-1} X^{\top} y,
$$

then $X \widehat{\beta}=X X^{-} y=\widehat{P} y=\widehat{y}$ is projection of y into $\mathcal{L}_{\text {col }}(X)$.

5.16.2 Orthogonal Representation of X

Suppose X has the following SVD decomposition

$$
X=U D V^{\top}=\left(u_{1}, \cdots, u_{k}\right)\left(\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& & d_{k}
\end{array}\right)\left(\begin{array}{c}
v_{1}^{\top} \\
\vdots \\
v_{k}^{\top}
\end{array}\right),
$$

where

$$
\begin{gathered}
U_{n \times k}=\left(u_{1}, u_{2}, \cdots, u_{k}\right), u_{i} \in \mathbb{R}^{n} \\
V_{p \times k}=\left(v_{1}, v_{2}, \cdots, v_{k}\right), v_{i} \in \mathbb{R}^{p} \\
D=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{k}\right), d_{1} \geq d_{2} \geq \cdots \geq d_{k}>0 \\
k=\operatorname{rank}(X)
\end{gathered}
$$

Then

$$
X=\sum_{j=1}^{k} u_{j} d_{j} v_{j}^{\top}
$$

Let $B_{j}=u_{j} v_{j}^{\top} . B_{j}$ is $(n \times p)$ matrix, $\operatorname{rank}\left(B_{j}\right)=1$. We have

$$
X=\sum_{j=1}^{k} d_{j} B_{j} .
$$

- B_{j} are orthogonal to each other, and $\left\|B_{j}\right\|=1$.

Proof: $\forall i \neq j,<B_{i}, B_{j}>=0$

$$
\Leftrightarrow \sum_{l, m}\left(B_{i}\right)_{l m}\left(B_{j}\right)_{l m}=\operatorname{tr}\left(B_{i}^{\top} B_{j}\right)=\operatorname{tr}\left(v_{i} u_{i}^{\top} u_{j} v_{j}^{\top}\right)=\operatorname{tr}\left(u_{i}^{\top} u_{j} v_{j}^{\top} v_{i}\right)=\left\{\begin{array}{l}
0, \text { if } i \neq j, \\
1, \text { if } i=j
\end{array}\right.
$$

Define $\widehat{X}(J)=\sum_{j=1}^{J} d_{j} B_{j}, J \leq k, \operatorname{rank}(\widehat{X}(J))=J . \widehat{X}(J)$ is an approximation to X with the following properties:

1. $\|X-\widehat{X}(J)\|^{2}=\sum_{j=J+1}^{k} d_{j}^{2}$;
2. $\frac{\|X-\widehat{X}(J)\|^{2}}{\|X\|^{2}}=\frac{\sum_{j=J+1}^{k} d_{j}^{2}}{\sum_{j=1}^{k} d_{j}^{2}}$ (percentage).

Example: $X_{n \times p}, k=p$ but $\widehat{X}(p-1)$ approximates X very well, then X has multi-collinearity.

5.16.3 Block matrix inversion

Consider block matrix

$$
A_{(p+q) \times(p+q)}=\left(\begin{array}{ll}
A_{11_{p \times p}} & A_{12_{p \times q}} \\
A_{21_{q \times p}} & A_{22_{q \times q}}
\end{array}\right),
$$

where A_{11}, A_{22} are invertible, then we have

$$
A^{-1}=\left(\begin{array}{cc}
A_{11}^{-1}+A_{11}^{-1} A_{12}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1} A_{21} A_{11}^{-1} & -A_{11}^{-1} A_{12}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1} \\
-A_{22}^{-1} A_{21}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} & \left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1}
\end{array}\right)
$$

5.16.3.1 Woodbury's formula

Suppose $A_{p \times p}, B_{q \times q}$ are both non-singular, then

$$
\left(A_{p \times p}+U_{p \times q} B_{q \times q} V_{q \times p}\right)^{-1}=A^{-1}-A^{-1} U\left(B^{-1}+V A^{-1} U\right)^{-1} V A^{-1} .
$$

Proof: Assume we are trying compute

$$
\left(\begin{array}{ll}
A & U \\
V & B
\end{array}\right)^{-1}
$$

We can do a column elimination first and then a row elimination to make the matrix diagonal. Specifically, by column operation:

$$
\left(\begin{array}{cc}
I & 0 \\
-V A^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A & U \\
V & B
\end{array}\right)=\left(\begin{array}{cc}
A & U \\
0 & B-V A^{-1} U
\end{array}\right) .
$$

By row operation:

$$
\left(\begin{array}{cc}
A & U \\
V & B
\end{array}\right)\left(\begin{array}{cc}
I & -A^{-1} U \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
A & 0 \\
V & B-V A^{-1} U
\end{array}\right) .
$$

Then it follows

$$
\begin{gather*}
\left(\begin{array}{cc}
I & 0 \\
-V A^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A & U \\
V & B
\end{array}\right)\left(\begin{array}{cc}
I & -A^{-1} U \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
A & 0 \\
0 & B-V A^{-1} U
\end{array}\right) \\
\Longrightarrow\left(\begin{array}{cc}
A & U \\
V & B
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1}+A^{-1} U\left(B-V A^{-1} U\right)^{-1} V A^{-1} & -A^{-1} U\left(B-V A^{-1} U\right)^{-1} \\
-\left(B-V A^{-1} U\right)^{-1} V A^{-1} & \left(B-V A^{-1} U\right)^{-1}
\end{array}\right) . \tag{1}
\end{gather*}
$$

On the other hand, we can also do row elimination first and then column elimination. It follows that

$$
\left(\begin{array}{cc}
A & U \\
V & B
\end{array}\right)=\left(\begin{array}{cc}
I & U B^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
A-U B^{-1} V & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
B^{-1} V & 0
\end{array}\right)
$$

$$
\Longrightarrow\left(\begin{array}{ll}
A & U \tag{2}\\
V & B
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\left(A-U B^{-1} V\right)^{-1} & -\left(A-U B^{-1} V\right)^{-1} U B^{-1} \\
-B^{-1} V\left(A-U B^{-1} V\right)^{-1} & B^{-1}+B^{-1} V\left(A-U B^{-1} V\right)^{-1} V B^{-1}
\end{array}\right) .
$$

Note that the right-hand-side of (1) and (2) should be equal. The equality of left-upper block gives Woodbury's formula.

For special case when $q=1$:

$$
(A+b U V)^{-1}=A^{-1}-\frac{A^{-1} U V^{\top} A^{-1}}{b+V^{\top} A^{-1} U}
$$

5.16.3.2 Statistical application of block matrix inversion

Consider

$$
X=\binom{X_{1}}{X_{2}}, \Sigma=\operatorname{Var}(X)=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

Using block matrix inversion, we have

$$
(\Sigma)_{22}^{-1}=\left(\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}=\left(\Sigma_{22}^{\perp}\right)^{-1}
$$

where the right-hand-side represents the conditional variance of X_{2} conditioning on X_{1}.

* Exercise: it is known that $\Sigma_{i j}=0 \Leftrightarrow \operatorname{Cov}\left(X_{i}, X_{j}\right)=0$. Show that $\left(\Sigma^{-1}\right)_{i j}=0 \Leftrightarrow X_{i}, X_{j}$ have partial correlation of 0 after projecting on $X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{p}$.

5.17 Multivariate Normal (Gaussian) Distribution

5.17.1 Standard normal

Random vector Z following standard normal distribution is denoted as:

$$
Z \sim N_{p}\left(0, I_{p}\right) \Leftrightarrow Z=\left(z_{1}, . ., z_{p}\right)^{\top}, z_{i} \stackrel{i i d}{\sim} N(0,1)
$$

Density function is:

$$
f_{Z}(\underline{x})=(2 \pi)^{-\frac{p}{2}} \exp \left\{-\frac{1}{2}\|\underline{x}\|^{2}\right\}
$$

Characteristic function is:

$$
\Psi_{Z}(t)=E\left(e^{i t^{\top} Z}\right)=e^{-\frac{1}{2}\|t\|^{2}}=e^{-\frac{1}{2} t^{\top} t}
$$

5.17.2 General normal (Gaussian)

For any $\mu \in \mathbb{R}^{p}$, and symmetric positive semi-definite matrix $\Sigma_{p \times p}$, a random vector following general normal distribution can be constructed as

$$
X=\mu+\Sigma^{\frac{1}{2}} Z \sim N_{p}(\mu, \Sigma)
$$

The following are some properties of general normal distribution:

1. $E(X)=\mu, \operatorname{Cov}(X, X)=\Sigma$.
2. If $\operatorname{rank}(\Sigma)=p$ (full rank), then Σ is positive definite, and density exists:

$$
f_{X}(x)=f_{Z}(x) J(Z \rightarrow X)=(2 \pi)^{-\frac{p}{2}} \exp \left\{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right\}|\operatorname{det}(\Sigma)|^{-\frac{1}{2}}
$$

3. Characteristic function:

$$
\Psi_{X}(x)=E\left[e^{i t^{\top} X}\right]=\exp \left\{i t^{\top} \mu-\frac{1}{2} t^{\top} \Sigma t\right\}
$$

4. For any $\mu \in \mathbb{R}^{p}, \Sigma_{p \times p} \geq 0$ being symmetric, there is a unique $N_{p}(\mu, \Sigma)$ distribution.
5. $X \in \mu+\mathcal{L}_{\text {col }}(\Sigma)$ with probability 1 , since $\mathcal{L}_{\text {col }}\left(\Sigma^{-\frac{1}{2}}\right)=\mathcal{L}_{\text {col }}(\Sigma)$.
6. Let $Y=r_{q}+A_{q \times p} X_{p \times 1}$. Then $Y \sim N_{q}\left(r+A \mu, A \Sigma A^{\top}\right)$.
7. Skewness is always 0 . For $X=\left(x_{1}, \ldots, x_{p}\right) \sim N_{p}(\mu, \Sigma)$,

$$
E\left(\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\left(x_{k}-\mu_{k}\right)\right)=0, \forall i, j, k
$$

Kurtosis is

$$
E\left(\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)\left(x_{3}-\mu_{3}\right)\left(x_{4}-\mu_{4}\right)\right)=\sigma_{12} \sigma_{34}+\sigma_{13} \sigma_{24}+\sigma_{14} \sigma_{23}
$$

8. Take $\mu=0, \Sigma^{\frac{1}{2}}=\Gamma$ as a $p \times p$ orthogonal matrix, then $X=\Gamma Z \sim N_{p}\left(0, I_{p}\right)$. \Longrightarrow Standard normal is rotationally (spherically) invariant.
9. Let $U=Z /\|Z\| . U$ is uniformly distributed on the surface of a p-dimensional sphere.

Chapter 6: Multivariate Gaussian and Matrix Manipulation
 Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

6.18 Multivariate Normal Distribution

Properties (cont.)

9. $U=Z /\|Z\|$ is uniform on a sphere. This is a way to simulate a uniform distribution on a sphere.
10. $\binom{X_{p}}{Y_{q}} \sim N_{p+q}\left(\binom{\mu_{X}}{\mu_{Y}},\left(\begin{array}{ll}\Sigma_{X X} & \Sigma_{X Y} \\ \Sigma_{Y X} & \Sigma_{Y Y}\end{array}\right)\right) \Longrightarrow X \sim N_{p}\left(\mu_{X}, \Sigma_{X X}\right)$

A marginal distribution of a sub-vector is still multivariate Gaussian.
11. $\Sigma_{X Y}=0 \Longleftrightarrow X \Perp Y$

Proof: $\psi_{(X, Y)}(t, s)=\psi_{X}(t) \psi_{Y}(s)$
12. Conditional distribution, $Y \mid X \sim N_{q}\left(\mu_{Y}+\Sigma_{Y X} \Sigma_{X X}^{-1}\left(X-\mu_{X}\right), \Sigma_{Y Y}-\Sigma_{Y X} \Sigma_{X X}^{-1} \Sigma_{X Y}\right)$

Proof: $Y=\hat{Y}+Y^{\perp}$ (projection on $\left.\mathcal{L}(X)\right)$
$\psi_{Y \mid X}(t)=E\left[e^{i t^{T} Y} \mid X\right]=E\left[e^{i t^{T}\left(\hat{Y}+Y^{\perp}\right)} \mid X\right]=e^{i t^{T} \hat{Y}} E\left[e^{i t^{T} Y^{\perp}} \mid X\right]$
$\operatorname{Cov}\left(Y^{\perp}, X\right)=0 \Longleftrightarrow Y^{\perp} \Perp X \Longrightarrow e^{i t^{T} \hat{Y}} E\left[e^{i t^{T} Y^{\perp}} \mid X\right]=e^{i t^{T} \hat{Y}} E\left[e^{i t^{T} Y^{\perp}}\right]$
13. $E[Y \mid X]$ is the best linear predictor of Y in terms of X and the best predictor of Y in terms of X . This holds for any conditional expectation. In the Gaussian case, the best linear prediction is the best prediction.
Proof: Recall $Y=\hat{Y}+Y^{\perp}$. The best linear predictor is $\hat{Y}=A X$ such that $\operatorname{Var}\left(Y^{\perp}\right)$ is minimized. The best predictor is $\hat{Y}=f(X)$ such that $\operatorname{Var}\left(Y^{\perp}\right)$ is minimized.

$$
E[Y \mid X]=E\left[\hat{Y}+Y^{\perp} \mid X\right]=f(X)+E\left[Y^{\perp} \mid X\right] \wedge \operatorname{Var}\left(Y^{\perp}\right)=E\left[\operatorname{Var}\left(Y^{\perp} \mid X\right)\right]+\operatorname{Var}\left(E\left[Y^{\perp} \mid X\right]\right) \Longrightarrow f(X)=E[Y \mid X]
$$

Repeated Sampling

Now, instead of looking at just one sample, lets look at n independent and identically distributed p dimensional random vectors:

$$
X_{1}, \ldots, X_{n} \sim^{i . i . d} N(\mu, \Sigma)
$$

We assume Σ is full rank, i.e. it is positive definite. we can collect all the random vectors as columns, and we get a random matrix:

$$
\mathbb{X}_{p \times n}=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
X_{1} & X_{2} & \ldots & X_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right)
$$

We can find the joint distribution using independence:

$$
f_{(\mu, \Sigma)}(\mathbb{X})=\frac{1}{\left((2 \pi)^{p}|\Sigma|\right)^{\frac{n}{2}}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{T} \Sigma^{-1}\left(X_{i}-\mu\right)\right)
$$

Let us simplify the exponent of e using sample mean $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$,

$$
\begin{gathered}
\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{T} \Sigma^{-1}\left(X_{i}-\mu\right) \\
=\sum_{i=1}^{n}\left(X_{i}-\bar{X}+\bar{X}-\mu\right)^{T} \Sigma^{-1}\left(X_{i}-\bar{X}+\bar{X}-\mu\right) \\
=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{T} \Sigma^{-1}\left(X_{i}-\bar{X}\right)+n(\bar{X}-\mu)^{T} \Sigma^{-1}(\bar{X}-\mu) \\
=\operatorname{Tr}\left(\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{T} \Sigma^{-1}\left(X_{i}-\bar{X}\right)\right)+n(\bar{X}-\mu)^{T} \Sigma^{-1}(\bar{X}-\mu) \\
=\operatorname{Tr}\left(\Sigma^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}\right)+n(\bar{X}-\mu)^{T} \Sigma^{-1}(\bar{X}-\mu) \\
=\operatorname{Tr}\left(\Sigma^{-1} S\right)+n(\bar{X}-\mu)^{T} \Sigma^{-1}(\bar{X}-\mu),
\end{gathered}
$$

where $S=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}$ is the sample covariance matrix. Thus we can write the joint distribution in terms of the sample mean \bar{X} and sample covariance matrix S,

$$
f_{(\mu, \Sigma)}(\mathbb{X})=\frac{1}{\left((2 \pi)^{p}|\Sigma|\right)^{\frac{n}{2}}} \exp \left(\operatorname{Tr}\left(\Sigma^{-1} S\right)+n(\bar{X}-\mu)^{T} \Sigma^{-1}(\bar{X}-\mu)\right)
$$

(\bar{X}, S) is a sufficient statistic (complete sufficient).
Multivariate Gaussian distribution is a special case of the exponential family, whose distribution is of the form

$$
f(\tilde{x}, \theta)=\exp \left(\sum_{i=1}^{k} \eta_{i}(\theta) T_{i}(\tilde{x})-\psi(\theta)\right) h(\tilde{x})
$$

where \tilde{x} can be either a vector or a matrix, and $\left\{T_{i}(k)\right\}$ are complete sufficient.

6.19 Matrix Manipulation

Vectorization

$$
A=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
a_{1} & a_{2} & \ldots & a_{p} \\
\vdots & \vdots & & \vdots
\end{array}\right)_{n \times p} \Longrightarrow \operatorname{vec}(A)=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{p}
\end{array}\right)_{n p \times 1}
$$

With this definition, we can define other things like matrix norm, inner product, and orthogonality between matrices.

$$
\begin{gathered}
\|A\|^{2}=\|\operatorname{vec}(A)\|^{2}=\operatorname{tr}\left(A^{T} A\right) \\
\langle A, B\rangle=\langle\operatorname{vec}(A), \operatorname{vec}(B)\rangle=\operatorname{tr}\left(A^{T} B\right)
\end{gathered}
$$

This leads us to a natural way to manipulate random matrix $X_{p x n}$, where $X_{i} \stackrel{i i d}{\sim} N_{p}(\mu, \Sigma)$ for all $i \in$ $\{1, \ldots, n\}$.

$$
X_{p \times n}=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
X_{1} & X_{2} & \ldots & X_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right) \Longrightarrow \operatorname{vec}(X)=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right)_{p n \times 1}
$$

$\operatorname{vec}(X) \sim N_{p n}\left(\mu^{*}, \Sigma^{*}\right)$ such that:

$$
\begin{aligned}
& \mu^{*}=\left(\begin{array}{c}
\mu \\
\mu \\
\vdots \\
\mu
\end{array}\right)_{(p n) \times 1} \\
& \Sigma^{*}=\left(\begin{array}{ccccc}
\Sigma & \operatorname{Cov}\left(X_{1}, X_{2}\right)=0 & \ldots & \operatorname{Cov}\left(X_{1}, X_{3}\right)=0 & \operatorname{Cov}\left(X_{1}, X_{n}\right)=0 \\
\operatorname{Cov}\left(X_{2}, X_{1}\right)=0 & \Sigma & \ddots & \operatorname{Cov}\left(X_{2}, X_{3}\right)=0 & \operatorname{Cov}\left(X_{2}, X_{n}\right)=0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\operatorname{Cov}\left(X_{n-1}, X_{1}\right)=0 & \operatorname{Cov}\left(X_{n-1}, X_{2}\right)=0 & \ddots & \Sigma & \operatorname{Cov}\left(X_{n-1}, X_{n}\right)=0 \\
\operatorname{Cov}\left(X_{n}, X_{1}\right)=0 & \operatorname{Cov}\left(X_{n}, X_{2}\right)=0 & \ldots & \operatorname{Cov}\left(X_{n}, X_{n-1}\right)=0 & \Sigma
\end{array}\right) \\
& =\operatorname{diag}(\Sigma, \Sigma, \ldots, \Sigma)=I_{n} \otimes \Sigma
\end{aligned}
$$

Kronecker Product

The definition of a Kronecker product is as follows:

$$
A_{p x q} \otimes B_{r x s}=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 q} B \\
a_{21} B & a_{22} B & \ldots & a_{2 q} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{p 1} B & a_{p 2} B & \ldots & a_{p q} B
\end{array}\right)_{(p r) \times(q s)}
$$

The Kronecker product has the following properties:

1. $(A \otimes B) \otimes C=A \otimes(B \otimes C)$
2. $(A \otimes B)^{T}=\left(A^{T} \otimes B^{T}\right)$
3. $(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$ if A, B invertible
4. $(A \otimes B)(C \otimes D)=(A C \otimes B D)$
5. $\operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \operatorname{tr}(B)$
6. $\operatorname{vec}(A X B)=\left(B^{T} \otimes A\right) \operatorname{vec}(X)$

Returning to the repeated sampling setup, we see when

$$
X_{1}, \ldots, X_{n} \sim^{i . i . d} N(\mu, \Sigma)
$$

and

$$
\mathbb{X}_{p \times n}=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
X_{1} & X_{2} & \ldots & X_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right)
$$

and $\mu \cdot \mathbf{1}^{T}=(\mu \mu \cdots \mu)$, we have

$$
\mathbb{X}_{p \times n} \sim N_{p \times n}\left(\mu \cdot \mathbf{1}^{T}, I_{n} \otimes \Sigma\right)
$$

Generalization of (i.i.d.) Normal Data Matrix

We now consider

$$
\mathbb{X}_{p \times n}=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
X_{1} & X_{2} & \ldots & X_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right)
$$

where $X_{1}, \ldots, X_{n} \sim N(\mu, \Sigma)$, i.e. they are identically distributed but not independent. Under the independence assumption, we have

$$
\operatorname{Cov}\left(\mathbb{X}_{i_{1} j_{1}}, \mathbb{X}_{i_{2} j_{2}}\right)=\Sigma_{i_{1} i_{2}} I_{j_{1} j_{2}}
$$

In the dependent case we will have

$$
\operatorname{Cov}\left(\mathbb{X}_{i_{1} j_{1}}, \mathbb{X}_{i_{2} j_{2}}\right)=\Sigma_{i_{1} i_{2}} \Delta_{j_{1} j_{2}}
$$

for some symmetric positive definite matrix Δ.

- $\operatorname{Cov}\left(\mathbb{X}_{i_{1}, j_{1}}, \mathbb{X}_{i_{2}, j_{2}}\right)=\Sigma_{i_{1}, i_{2}} \triangle_{j_{1}, j_{2}}$ for Σ, \triangle symmetric and $\Sigma>0, \triangle>0$.
- $\operatorname{Cov}\left(\mathbb{X}_{\bullet}, j\right)=\operatorname{Cov}\left(\left(\mathbb{X}_{1, j}, \cdots, \mathbb{X}_{p, j}\right)^{T}\right)=\Sigma \cdot \triangle_{j, j}$
- $\operatorname{Cov}\left(\mathbb{X}_{i, \bullet}\right)=\operatorname{Cov}\left(\left(\mathbb{X}_{i, 1}, \cdots, \mathbb{X}_{i, n}\right)^{T}\right)=\Sigma_{i, i} \cdot \triangle$.

Chapter 7: Multivariate Gaussian Distribution

Lecturer: Shihao Yang
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

7.20 Repeated Sampling (continued)

Now we consider $\mathbb{X}=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ with $X_{1}, X_{2}, \cdots, X_{n}$ are identically distributed but not independent. E.g.: stationary time series $X_{1}, X_{2}, \cdots, X_{t}$ with each vector marginally following same distribution, vector Auto Regressive (VAR) Model.

Then assume $\mathbb{X}_{p \times n} \sim N_{p \times n}(\mu, \triangle \otimes \Sigma)$, where $\mu_{i, j}=E\left(\mathbb{X}_{i, j}\right)$ is a matrix, $\operatorname{Cov}(\operatorname{vec}(\mathbb{X}))=\triangle \otimes \Sigma$

7.20.1 Properties of Generalised Gaussian Matrix

- $\mathbb{X}^{T} \sim N_{n \times p}\left(\mu^{T}, \Sigma \otimes \triangle\right)$.
- If $\mathbb{X}_{p \times n} \sim N_{p \times n}(\mu, \triangle \otimes \Sigma)$, then $A_{q \times p} \mathbb{X}_{p \times n} B_{n \times m} \sim N\left(A \mu B,\left(B^{T} \triangle B\right) \otimes\left(A \Sigma A^{T}\right)\right)$.

Proof: $\operatorname{vec}(A \mathbb{X} B)=\left(B^{T} \otimes A\right) \cdot \operatorname{vec}(\mathbb{X})$, then

$$
\begin{align*}
\operatorname{Cov}(\operatorname{vec}(A \mathbb{X} B)) & =\operatorname{Cov}\left(\left(B^{T} \otimes A\right) \cdot \operatorname{vec}(\mathbb{X})\right) \\
& =\left(B^{T} \otimes A\right) \operatorname{Cov}(\operatorname{vec}(\mathbb{X}))\left(B^{T} \otimes A\right)^{T} \\
& =\left(B^{T} \otimes A\right)(\triangle \otimes \Sigma)\left(B \otimes A^{T}\right) \tag{7.1}\\
& =\left(B^{T} \triangle B\right) \otimes\left(A \Sigma A^{T}\right)
\end{align*}
$$

to remember intuition, think special case with $n=p=1$.

- Suppose Σ, \triangle have spectral decomposition

$$
\begin{equation*}
\Sigma=\Gamma_{1} D_{1} \Gamma_{1}^{T}, \triangle=\Gamma_{2} D_{2} \Gamma_{2}^{T} \tag{7.2}
\end{equation*}
$$

with $\operatorname{rank}(\Sigma)=k_{1}, \operatorname{rank}(\triangle)=k_{2}$. Then we can take

$$
\begin{equation*}
\mathbb{X}=\mu+\Gamma_{1} D_{1}^{1 / 2} \mathbb{Z} D_{2}^{1 / 2} \Gamma_{2}^{T} \tag{7.3}
\end{equation*}
$$

then $\mathbb{Z}_{k_{1} \times k_{2}} \sim N\left(0, I_{k_{2}} \otimes I_{k_{1}}\right)$ (iid standard normal in all entries of matrix), which is equivalent to $\mathbb{X} \sim N_{p \times n}(\mu, \triangle \otimes \Sigma)$.

Consider $\mathbb{X}_{p \times n} \sim N_{p \times n}\left(0, I_{n} \otimes \Sigma\right) \Longleftrightarrow \mathbb{X}=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ with $X_{1}, X_{2}, \cdots, X_{n} N_{p}(0, \Sigma)$ follows iid.

$$
\mathbb{X}=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
X_{1} & X_{2} & \cdots & X_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right)
$$

Let $V=\mathbb{X}_{p \times n}^{T}=\left(v_{1}, v_{2}, \cdots, v_{p}\right)$ and we have $v_{i} \sim N_{n}\left(0, \sigma_{i i} I_{n}\right)$.

$$
V=\mathbb{X}^{\mathbb{T}}=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
v_{1} & v_{2} & \cdots & v_{p} \\
\vdots & \vdots & & \vdots
\end{array}\right)
$$

$$
\mathbb{X}=\left(\begin{array}{c}
\cdots v_{1}^{T} \cdots \\
\cdots v_{2}^{T} \cdots \\
\vdots \\
\cdots v_{p}^{T} \cdots
\end{array}\right)
$$

where v_{p}^{T} can be taken as individual features like height, weight, age, etc.
Rotational in-variance of mean 0 , Normal data matrix. I_{n} is a full orthogonal matrix Moreover, let $\Gamma_{n \times n}$ be a full orthogonal basis, then

$$
\begin{equation*}
\Gamma v_{i} \sim N_{n}\left(0, \sigma_{i i} \Gamma I_{n} \Gamma^{T}\right)=N_{n}\left(0, \sigma_{i i} I_{n}\right) \sim v_{i} \tag{7.4}
\end{equation*}
$$

and

$$
\begin{equation*}
X \Gamma^{T}=\left(\Gamma X^{T}\right)^{T}=(\Gamma V)^{T} \sim N\left(0, \Gamma \Gamma^{T} \otimes \Sigma\right)=N\left(0, I_{n} \otimes \Sigma\right) \tag{7.5}
\end{equation*}
$$

7.21 Spherical Symmetry and t-test

Recall the univariate t-test -

$$
\begin{align*}
X_{1}, X_{2}, \cdots, X_{n} & \sim N\left(\mu, \sigma^{2}\right) \text { follows iid, } H_{0}: \mu=0 ; H_{1}: \mu \neq 0 \tag{7.6}\\
t & =\frac{\sqrt{n} \bar{X}}{\sqrt{\sum_{i}\left(X_{i}-\bar{X}\right)^{2} /(n-1)}} \tag{7.7}
\end{align*}
$$

In geometry, $1_{n \times 1}=(1,1, \cdots, 1)^{T}$. Using projection onto $1_{n \times 1}$.
We have $\hat{X}=P_{1} X=(\bar{X}, \bar{X}, \cdots, \bar{X})_{n \times 1}$.
Moreover, $X^{\perp}=X-\hat{X}=\left(X_{1}-\hat{X}, X_{2}-\hat{X}, \cdots, X_{n}-\hat{X}\right)=\left(I-P_{1}\right) X$, and

$$
\begin{equation*}
t=\operatorname{sgn}(\hat{X}) \cdot \sqrt{n-1} \cdot \frac{\|\hat{X}\|}{\left\|X^{\perp}\right\|} \tag{7.8}
\end{equation*}
$$

where $\|\hat{X}\|=\|(\bar{X}, \bar{X}, \cdots, \bar{X})\|=\sqrt{n\left(\bar{X}^{2}\right)}=\sqrt{n}|\bar{X}|$
$P_{1}\left(\right.$ projection matrix onto $\left.1^{T}\right)=1\left(1^{T} 1\right)^{-1} 1^{T}=\frac{1}{n} 1 \cdot 1^{T}$

Figure 7.7: Geometric intuition behind t-test

ISYE 7405: Multivariate Data Analysis
Georgia Tech
Chapter 8: Enter the title
Lecturer: Shihao Yang
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

8.22 Centering matrix

$$
\begin{gathered}
\mathbb{X}=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
X_{1} & X_{2} & \cdots & X_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right) \\
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \bar{X}=\frac{1}{n} \mathbb{X} I_{n}, I_{n}=\left(\begin{array}{c}
I \\
I \\
I \\
\vdots \\
I
\end{array}\right)_{n \times 1} \\
Y=\left(X_{1}-\bar{X}, X_{2}-\bar{X}, \cdots, X_{n}-\bar{X}\right) \\
=\mathbb{X}-(\bar{X}, \bar{X}, \bar{X}, \cdots, \bar{X})=\mathbb{X}-\bar{X} I_{n}^{T}=\mathbb{X}-\frac{1}{n}\left(\mathbb{X} I_{n}\right) I_{n}^{T} \\
\\
=\mathbb{X}\left(I_{n}-\frac{1}{n} I_{n} I_{n}^{T}\right)
\end{gathered}
$$

$$
\begin{gathered}
\hat{P}_{I}=\frac{1}{n} I_{n} I_{n}^{T}: \text { projection matrix onto } \mathcal{L}_{\text {col }}^{\perp}\left(I_{n}\right) \\
=I_{n}\left(I_{n}^{T} I_{n}\right)^{-1} I_{n}^{T} \\
H_{n}=I_{n}-\frac{1}{n} I_{n} I_{n}^{T}=\hat{P}_{I}^{\perp}: \text { projection matrix onto } \mathcal{L}_{\text {col }}^{\perp}\left(I_{n}\right) \\
J_{n}=I_{n} I_{n}^{T}=\left(\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1
\end{array}\right)
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
Y=X H_{n} \\
\mathbb{X}_{p \times n} \sim N\left(\mu I_{n}^{T}, I_{n} \otimes \sum\right) \quad \mu I_{n}^{T}=\left(\begin{array}{cc}
1 \\
\mu \\
1 & \underset{1}{\mu}, \ldots \underset{1}{\mu}
\end{array}\right) \\
Y_{p \times n} \sim \mathbb{X} H_{n} \quad \hat{\Downarrow} x_{i} \stackrel{i i d}{\sim} N_{p}\left(\mu, \sum\right)
\end{gathered}
$$

8.23 Properties of $Y_{p \times n}$

8.23.1 Distribution

$$
\begin{gathered}
Y_{p \times n} \sim N_{p \times n}\left(0, \underline{H_{n}} \otimes \sum\right) \\
H_{n}^{T} \frac{\uparrow}{I_{n}} H_{n}=H_{n} \\
\bar{X} \sim N_{p}\left(\mu, \frac{1}{\frac{n}{n}} \sum\right) \\
\frac{1}{n^{2}}\left(I_{n}^{T} I_{n} I_{n}\right) \stackrel{\uparrow}{\otimes} \sum \\
\frac{1}{n} \sum^{\uparrow}
\end{gathered}
$$

8.23.2 $Y \amalg \bar{X}$ only need uncorrelated

$$
\begin{gathered}
(Y, \bar{X})=\mathbb{X}\left(H_{n}, \frac{1}{n} I_{n}\right) \\
\sim N\left[\quad,\left(H_{n}, \frac{1}{n} I_{n}\right)^{T} I_{n}\left(H_{n}, \frac{1}{n} I_{n}\right) \otimes \sum\right] \\
Y \coprod \bar{X} \Leftrightarrow H_{n} \cdot \frac{1}{n} I_{n}=0 \\
I_{n} \uparrow \frac{1}{n} I_{n} I_{n}^{T}
\end{gathered}
$$

8.23.3 $Y Y^{T}$ is independent of \bar{X}

$$
\begin{aligned}
S & =\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T} \\
& =Y Y^{T} \coprod \bar{X}
\end{aligned}
$$

8.23.4 Distribution of $Y Y^{T}$

I_{n} / \sqrt{n} vector, wren of I
$\exists I_{1, n \times(n-1)}$ is orthogonal basic of $\mathcal{L}_{o l}^{\perp}\left(I_{n}\right)$
Then $\Gamma=\left(\Gamma_{1}, I_{n} / \sqrt{n}\right)$ is full orthogonal basis
H_{n} projection matrix onto $\mathcal{L}_{o l}^{\perp}\left(I_{n}\right)=\Gamma_{1} \Gamma_{1}^{T}$
$Z=\mathbb{X} \Gamma_{1} \sim N_{p \times(n-1)}\left(0, I_{n-1} \otimes \sum\right)$
$S=Y Y^{T}=Y H_{n} Y^{T}=Y \Gamma_{1} \Gamma^{T} Y^{T}=Z Z^{T}$
$Z Z^{T}=\mathbb{X} \Gamma_{1} \Gamma^{T} \mathbb{X}^{T}=\mathbb{X} H_{n}\left(H_{n}^{T} \mathbb{X}^{T}\right)=Y Y^{T}$
$\Rightarrow Y Y^{T}$ has the same distribution of $Z Z^{T}$ where $Z \sim N_{p x(n-1)}\left(0, I_{n-1} \otimes \sum\right)$
$\Leftrightarrow Y Y^{T}$ has the same distribution of $\sum_{i=1}^{n-1} Z_{i} Z_{i}^{T}$ where $Z_{1}, Z_{2}, \cdots Z_{n-1} \stackrel{i d d}{\sim} N_{p}\left(\sum\right)$

8.24 Wishart distribution

Consider $\mathbb{X}_{p \times n} \sim N\left(0, I_{n} \otimes \sum\right)$
Def. For $\mathbb{X}_{p \times n} \sim N\left(0, I_{n} \otimes \sum\right), S=X X^{T}$ is said to have wishart distribution with scale matrix \sum, and degree of freedom n
$S \sim W_{p}\left(\sum, n\right)$
Pd.f : $f^{S}(S)=f^{\mathbb{X}}(X) J(\mathbb{X} \rightarrow S)$
*Jacobian to Triangular coordinate \Rightarrow Barlett decomposition
$J(\mathbb{X} \rightarrow S)=J(\mathbb{X} \rightarrow T) J(T \rightarrow S)$

$$
\left.\begin{array}{l}
T:(\nabla) V_{n \times p}=X^{T}, V=W_{n \times p} T_{p \times p}(Q R \text { decomp }) \\
S=X X^{T}=V^{T} V=T^{T} T \\
\text { Then } J(\mathbb{X} \rightarrow S)=J(\mathbb{X} \rightarrow T) J(J \rightarrow S)
\end{array}\right\} \text { idea of proof }
$$

Lemma 1 The integral Jacobian of $\mathbb{X}_{p \times n} \rightarrow T_{p \times p}$
$J(\mathbb{X} \rightarrow T)=C_{1} \cdot \prod_{i=1}^{p} t_{i i}^{n-i}$
where $C_{1}=2^{p} \pi^{\frac{n p}{2}-\frac{p^{2}}{4}}+\frac{p}{4} / \prod_{j=1}^{p} \Gamma\left(\frac{n-j+1}{2}\right)$
Corollary: $f^{T}(t)=f^{\mathbb{X}}(x) \cdot J(\mathbb{X} \rightarrow T)$
Hint: $\mathbb{X}_{p \times n} \sim N_{p \times n}\left(0, I_{n} \otimes I_{p}\right), x: j \sim N(0,1)$

Chapter 9: Properties of Wishart Distribution
 Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

9.25 Integral Jacobian

$$
X_{p \times n} \sim N\left(0, I_{n} \otimes \Sigma\right), \quad S=X X^{T}, \quad V=X^{T}=\left(v_{1}, v_{2}, \ldots, v_{p}\right)
$$

Definition: $S W_{p}\left(\Sigma, \Lambda, V=W T\right.$ ($Q R$ decomposition). $S=T^{T} T$
Lemma 1: Integral Jacobian of $X_{p \times n} \rightarrow T_{p \times p}$ is:

$$
\begin{equation*}
J(X \rightarrow T)=c_{1} \prod_{i=1}^{p} t_{i i}^{n-i}, \quad \text { where } \quad c_{1}=2^{p} \frac{\pi^{\frac{n p}{2}-\frac{p^{2}}{4}+\frac{p}{4}}}{\prod_{j=1}^{p} \Gamma\left(\frac{n-j+1}{2}\right)} \tag{9.9}
\end{equation*}
$$

Proof: Idea $X_{p \times n} \sim N\left(0, I_{n} \otimes I_{p}\right)$. Then if I find out the distribution of T, where $X^{T}=U=W T$. Then the $J(X \rightarrow T)=\frac{f^{X}(x)}{f^{T}(t)}$, where $f^{X}(x)=(2 \pi)^{-\frac{n p}{2}} \exp \left(-\frac{1}{2} \sum_{i j} x_{i j}^{2}\right)$.

$$
\begin{aligned}
\sum_{i j} x_{i j}^{2} & =\operatorname{tr}\left(X X^{T}\right) \\
& =\operatorname{tr}\left(T^{T} W^{T} W T\right) \\
& =\operatorname{tr}\left(T^{T} T\right) \\
& =\sum_{i j} t_{i j}^{2}
\end{aligned}
$$

Thus, we can write:

$$
f^{X}(x)=(2 \pi)^{-\frac{n p}{2}} \exp \left(-\frac{1}{2} \sum_{i j} t_{i j}^{2}\right)
$$

Next find out distribution of $t_{i j}$

$$
\begin{aligned}
& X^{T}=V=\left(v_{1}, v_{2}, \ldots, v_{p}\right)=W T \\
& v_{i}=\left[\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
\vdots \\
x_{i n}
\end{array}\right], \quad \text { each } N(0,1) \quad \text { iid }
\end{aligned}
$$

By Gram-Schmidt orthogonalization:

$$
\begin{aligned}
& v_{1}=t_{11} w_{1} \\
& v_{2}=t_{12} w_{1}+t_{22} w_{2} \\
& v_{3}=t_{13} w_{1}+t_{23} w_{2}+t_{33} w_{3} \\
& \quad \vdots \\
& v_{p}=t_{1 p} w_{1}+t_{2 p} w_{2}+\cdots+t_{p p} w_{p}
\end{aligned}
$$

where $t_{11}=\left\|v_{1}\right\|, t_{12}=$ Projection of V_{2} to W_{1}, \ldots, etc.
Construction of W and T :

$$
\begin{aligned}
t_{11}^{2} & =\left\|v_{1}\right\|^{2} \sim \chi_{n}^{2}, \quad w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|} \\
t_{12} & =<v_{2}, w_{1}>\sim N(0,1), \quad w_{2}=\text { Projection of } V_{2} \text { onto } L^{\perp}\left(V_{1}\right)=\frac{v_{2}^{\perp}}{\left\|v_{2}^{\perp}\right\|} \\
t_{22}^{2} & =\left\|v_{2}^{\perp}\right\|^{2} \sim \chi_{n-1}^{2}, \\
t_{13} & =<v_{3}, w_{1}>\sim N(0,1), \quad w_{3}=\text { Projection of } V_{3} \text { onto } L^{\perp}\left(V_{1}, V_{2}\right)=\frac{v_{3}^{\perp}}{\left\|v_{3}^{\perp}\right\|} \\
t_{23} & =<v_{3}, w_{2}>\sim N(0,1), \\
t_{33}^{2} & =\left\|v_{3}^{\perp}\right\|^{2} \sim \chi_{n-2}^{2} \\
& \vdots \\
t_{i j} & \sim N(0,1) \\
t_{i i} & \sim \chi_{n-i+1}^{2} \\
t_{i i}^{2} & \sim \chi_{n-i+1}^{2}
\end{aligned}
$$

We have that:

$$
\begin{aligned}
& t_{22}^{2}=\left\|v_{2}\right\|^{2}=\left\|P_{2}^{\perp} V_{2}\right\|^{2}=V_{2}^{T} P_{2}^{\perp} V_{2}=\left\|\left(\Gamma_{2}^{\perp}\right)^{T} V_{2}\right\|_{2}^{2} \\
& P_{2}^{\perp}=\left(\Gamma_{2}^{\perp}\right)\left(\Gamma^{\perp}\right)^{T}, \quad \Gamma_{2}^{\perp}=\text { is the orthogonal basis for } L_{c o l}^{\perp}\left(V_{1}, V_{2}\right) \\
& \left(\Gamma_{2}^{\perp}\right)^{T} V_{2} \sim N_{n-1}\left(0, I_{n-1}\right)
\end{aligned}
$$

As,

$$
\begin{aligned}
t_{12} & =<W_{1}, V_{2}>=W_{1}^{T} V_{2} \\
V_{2} & \sim N\left(0, I_{n}\right) \\
W_{1}^{T} V_{2} & \sim N\left(0, W_{1}^{T} W_{2}\right)=N(0,1) \\
\text { Similarly, } t_{23} & =<W_{2}, V_{3}>=W_{2}^{T} V_{3} \\
V_{3} & \sim N\left(0, I_{n}\right) \\
W_{2}^{T} V_{3} & \sim N\left(0, W_{2}^{T} W_{3}\right)=N(0,1) \\
\operatorname{cov}\left(W_{2}^{T} V_{3}, W_{1}^{T} V_{2}\right) & =E\left(W_{2}^{T} I_{n} W_{1}\right)=0
\end{aligned}
$$

So, all of $t_{i j}$'s are mutually independent, $i<j, t_{i j}$ is inner product onto orthogonal space \Longrightarrow correlation zero, \Longrightarrow independence. $t_{i i}$ is the norm (HW: $\|z\| \perp \frac{z}{\|z\|}$)

$$
\begin{gathered}
f^{T}(t)=\prod_{i=1}^{p} \frac{t_{i i}^{n-i} e^{-\frac{1}{2} t_{i i}^{2}}}{2^{\frac{n-i+1}{2}} \Gamma\left(\frac{n-i+2}{2}\right)} \prod_{j>i} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t_{i j}^{2}}{2}} \\
J(X \rightarrow T)=\frac{f^{T}(t)}{f^{X}(x)} \\
T=\left[\begin{array}{cccc}
\chi_{n} & N(0,1) & N(0,1) & \ldots \\
& \chi_{n-1} & N(0,1) & \ldots \\
& & & N(0,1) \\
& & \ldots & \chi_{n-p+1}
\end{array}\right]_{p \times p}
\end{gathered}
$$

9.26 Bartlett Decomposition for General Wishart Matrix

$$
\begin{aligned}
S & \sim W_{p}(\Sigma, n) \\
X_{p \times n} & \sim N_{p \times n}\left(0, I_{n} \otimes \Sigma\right) \quad \text { s.t. } S=X X^{T} \\
X_{p \times n} & =\Sigma^{\frac{1}{2}} Z \quad Z \sim N\left(0, I_{n} \times I_{p}\right) \\
S & =\Sigma^{\frac{1}{2}} Z Z^{T}\left(\Sigma^{\frac{1}{2}}\right)^{T}
\end{aligned}
$$

If we use $\Sigma^{1 / 2}=$ LT Cholesky Decomposition

$$
S=(L T)^{\Sigma^{1 / 2}}(L T)^{T^{T}}(U T)^{T}(U T)^{\left(\Sigma^{1 / 2}\right)^{T}}
$$

Lemma 9.10 $J(T \rightarrow S)$
Let T be upper triangular, $S=T^{T} T$. Then we have an injective mapping

$$
J(T \rightarrow S)=\left(2^{p} \prod_{i=1}^{n} t_{i i}^{p-i+1}\right)^{-1}
$$

Intuition: Degrees of Freedom $T, S: \frac{p(p+1)}{2}$ Proof: HW3

9.26.1 Hsu's Lemma

$$
\begin{aligned}
J(X \rightarrow S) & =J(X \rightarrow T) J(T \rightarrow S) \\
& =\frac{\pi^{\frac{n p}{2}-\frac{p^{2}}{4}+\frac{p}{4}}}{\prod_{i=1}^{p} \Gamma\left(\frac{n-i+1}{2}\right)}|S|^{\frac{1}{2}(n-p+1)}
\end{aligned}
$$

Theorem 9.11 If $\Sigma>0$, then $S>0 w . p .1$ and has density

$$
\begin{aligned}
f^{S}(s) & =C_{2}|\Sigma|^{-\frac{n}{2}} \exp \left\{-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} S\right)\right\}|S|^{\frac{n-p-1}{2}} \\
\text { where } C_{2} & =\left[2^{\left.\frac{n p}{2} \pi^{\frac{p^{2}}{4}-\frac{p}{4}} \prod_{i=1}^{p} \Gamma\left(\frac{n-i+1}{2}\right)\right]^{-1}}\right.
\end{aligned}
$$

9.26.2 Properties of Wishart Distribution

(1) If $S \sim W_{p}(\Sigma, n)$, let $\tilde{S}_{q q}=A_{q \times p} S_{p \times p} A_{p \times q}^{T}$. Then:

$$
\tilde{S} \sim W_{q}\left(A \Sigma A^{T}, n\right)
$$

Proof:

$$
\begin{aligned}
S & =X X^{T} \\
X & \sim N\left(0, I_{n} \otimes \Sigma\right) \\
A X & \sim N\left(0, I_{n} \otimes A \Sigma A^{T}\right) \\
\Rightarrow A S A^{T} & =A X X^{T} A^{T}=(A X)(A X)^{T} \sim W_{q}\left(A \Sigma A^{T}, n\right)
\end{aligned}
$$

(2) Let

$$
\begin{aligned}
& S_{1} \sim W_{p}\left(\Sigma, n_{1}\right) \\
& S_{2} \sim W_{p}\left(\Sigma, n_{2}\right) \\
& S_{1} \perp S_{2} \Rightarrow S_{1}+S_{2} \sim W_{p}\left(n_{1}+n_{2}\right)
\end{aligned}
$$

Proof:

$$
\begin{aligned}
S_{1} & =X_{1} X_{1}^{T} \text { where } X_{1} \sim N\left(0, I_{n_{1}} \otimes \Sigma\right) \\
S_{2} & =X_{2} X_{2}^{T} \text { where } X_{2} \sim N\left(0, I_{n_{2}} \otimes \Sigma\right) \\
S_{1} \perp S_{2} & \Longleftrightarrow X_{1} \perp X_{2} \\
\because \text { Block matrix }\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right] & \sim N\left(0, I_{n_{1}+n_{2}} \otimes \Sigma\right) \\
\therefore S_{1}+S_{2} & =\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \sim W_{p}\left(\Sigma, n_{1}+n_{2}\right)
\end{aligned}
$$

(3) Let

$$
X_{p \times n} \sim N\left(\mu_{p \times n}, I_{n} \otimes \Sigma\right)
$$

Where $\Gamma_{n \times m}$ is an orthogonal matrix in $\mathcal{L}_{\text {row }}^{\perp}(\mu)$ i.e. $\mu \Gamma=0$. Then:

$$
\begin{aligned}
Y_{p \times m} & =X \Gamma \sim N_{p \times m}(\underbrace{\mu \Gamma}_{0}, \underbrace{\Gamma^{T} \Gamma}_{I_{m}} \otimes \Sigma) \\
S & =Y Y^{T} \sim W_{p}(\Sigma, m)
\end{aligned}
$$

(4) Let

$$
X \sim N\left(\mu, I_{n} \otimes \Sigma\right)
$$

Where P is a projection matrix into m dimensional space that is a subspace of $\mathcal{L}_{\text {row }}^{\perp}(\mu)$ i.e. $\mu P=0$ Then

$$
Y:=X P \Rightarrow Y Y^{T} \sim W_{p}(\Sigma, m)
$$

Proof: Let Γ be an orthogonal basis $\Gamma_{n \times m}$

$$
\begin{aligned}
P & =\Gamma \Gamma^{T} \\
Y Y^{T} & =X P P X^{T} \\
& =X P X^{T} \\
& =X \Gamma \Gamma^{T} X^{T} \\
& =(X \Gamma)(X \Gamma)^{T}
\end{aligned}
$$

where $X \Gamma \sim N\left(0, I_{m} \otimes \Sigma\right)$
(5) Application to Centering

Consider the projection matrix onto $\mathcal{L}_{\text {col }}^{\perp}\left(1_{n}\right)$

$$
H_{n}=I_{n}-\frac{1}{n} 1_{n} 1_{n}^{T}
$$

and the matrix

$$
X \sim N\left(\mu 1_{n}^{T}, I_{n} \otimes \Sigma\right) \Longleftrightarrow X_{i} \stackrel{i i d}{\sim} N_{p}(\mu, \Sigma), i=1,2, \ldots, n
$$

Then

$$
\begin{aligned}
& Y=X H_{n}=\left(X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}\right) \\
& S=Y Y^{T}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T} \sim W_{p}(\Sigma, n-1)
\end{aligned}
$$

9.27 Wishart distribution

Definition 9.12 Suppose X is a $p \times n$ matrix, each column of which is independently drawn from a p-variate normal distribution with zero mean:
$S=X X^{T}=\sum_{i=1}^{n} X_{i} X_{i}^{T}$ known as the scatter matrix.
One indicates that S has that probability distribution by writing:
$S \sim W_{p}(V, n)$
The positive integer n is the number of degrees of freedom.
Theorem 9.13 Correlation coefficient: $\rho_{i j}=\frac{\sigma_{i j}}{\sqrt{\sigma_{i i} \sigma_{j j}}}$
Sample Correlation coefficient: $R_{i j}=\frac{S_{i j}}{\sqrt{S_{i i} S_{j j}}}$
$D_{p \times p}=\operatorname{diag}\left(\sqrt{S_{i i}}\right), i=1, \ldots, p$
So, $R=D^{-1} S D^{-1}$
$d f: R: \frac{p(p-1)}{2} \quad D: p \quad S: \frac{p(p+1)}{2}$
Therefore, $S \rightarrow(D, R)$ is an one-to-one mapping.
Lemma 9.14 $J(S \rightarrow(D, R))=2^{p}|D|^{p}$ proof: $S=D R D$ then calculate the derivative $S_{i j}=d_{i} R_{i j} d_{j}$
Theorem 9.15 The joint distribution of (D, R) is $f_{S}(s) \cdot 2^{p}|D|^{p}$
Corollary 9.16 If $S \sim W_{p}(\Sigma, n-1)$ then D is orthogonal to R with $f^{R}(R)=C_{4} \cdot|R| \stackrel{n-p-1}{2}$ and $D_{i i} \stackrel{i . i . d}{\sim} \chi_{n}$ Proof: $f_{S}(s) \cdot 2^{p}|D|^{p}=C_{3} \cdot e^{-\frac{1}{2} \operatorname{tr}(S)}|S|^{\frac{n-p-1}{2}} \cdot 2^{p}$
Because we can have this separate expression, D is orthogonal to R

Chapter 10: Intro to Hotelling's T^{2} statistics
Lecturer: Shihao Yang
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
This notes was done by Hongqian Sun

10.28 Hotelling's T^{2} statistics

Definition 10.17 Univariate t-test: $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} N\left(\mu, \sigma^{2}\right) . H_{0}: \mu=0, H_{1}: \mu \neq 0$

$$
t=\frac{\sqrt{n} \bar{X}}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} / n-1}}=\operatorname{sgn}(\bar{X}) \frac{\|\hat{X}\|}{\left\|X^{\perp}\right\|} \sqrt{n-1}
$$

Definition 10.18 Hotelling's T^{2} test: $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d}{\sim} N_{p}(\mu, \Sigma) . H_{0}: \mu=0, H_{1}: \mu \neq 0$

$$
S=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}=X X^{T}-n \bar{X} \bar{X}^{T}
$$

The T^{2} test statistics:

$$
T^{2}=\bar{X}^{T}\left(\frac{S}{n(n-1)}\right)^{-1} \bar{X}
$$

The Hotelling's T^{2} statistics if a quadratic from w.r.t. shape S^{-1}.

10.28.1 Geometric interpretation

Claim 10.19 look for the "smallest angle" between 1_{n} and any linear combination of $V_{1}, V_{2}, \ldots, V_{p}$, where $V_{n \times p}=X^{T}=\left(V_{1}, V_{2}, \ldots, V_{p}\right)$. Looking at the angle between $L_{r o w}(X) \circledast 1_{n}$. Let's all this angle A.

Proof:
Projection matrix onto $L_{\text {row }}(X)$ is $X^{T}\left(X X^{T}\right)^{-1} X$.
the project of 1_{n} on $L_{r} o w(X)$ is $u=X^{T}\left(X X^{T}\right)^{-1} X 1_{n}$.

$$
\begin{gathered}
\cos (A)\left\|1_{n}\right\|\|u\|=<1_{n}, u> \\
\cos ^{2}(A)=\frac{<1_{n}, u>^{2}}{<1_{n}, 1_{n}><u, u>}=\frac{1_{n}^{T} X^{T}\left(X X^{T}\right)^{-} 1 X 1_{n}}{n}=n \bar{X}^{T}\left(X X^{T}\right)^{-1} \bar{X}=n \bar{X}^{T}\left(S+n \bar{X} \bar{X}^{T}\right)^{-1} \bar{X}
\end{gathered}
$$

Woodbury's Formula:

$$
\cos ^{2}(A)=n \bar{X}^{T}\left[S^{-1}-\frac{S^{-1} \bar{X} \bar{X}^{T} S^{-1}}{1 / n+\bar{X} S^{-1} \bar{X}}\right] \bar{X}=\frac{n \bar{X}^{T} S^{-1} \bar{X}}{1+n \bar{X}^{T} S^{-1} \bar{X}}
$$

Therefore,

$$
\cot ^{2} A=\frac{\cos ^{2} A}{1-\cos ^{2} A}=n \bar{X}^{T} S^{-1} \bar{X}=\frac{T^{2}}{n-1}
$$

10.28.2 Connection with linear regression

$1_{n} \stackrel{\text { regress }}{=} \beta_{1} V_{1}+\beta_{2} V_{2}+\cdots+\beta_{p} V_{p} \quad H_{0}: \mu=0 \Longleftrightarrow H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p}=0, H_{1}$:at least 1 of β are not equal to 0

Chapter 11:

Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

11.29 Null Distribution of T^{2}

If H_{0} is true, Under $H_{0}: X \sim N_{p \times n}\left(0, I_{n} \otimes \Sigma\right)$, assume the angle between 1_{n} and $\mathcal{L}_{\text {row }}(X)$ is A.
Change the frame as if we are sitting down on a fixed p-dimensional hyperplane, where the direction of 1_{n} is "uniformly distributed" on all possible directions. Therefore, as long as the projection is concerned, we can take the plane to be $\mathcal{L}\left(e_{1}, e_{2}, \ldots, e_{p}\right)$ where $e_{i}=(0,0, \ldots, 0,1(\mathrm{i}-\mathrm{th}), 0, \ldots, 0)$ and replace 1_{n} by $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where $y_{i} \sim N(0,1)$, iid. Then

$$
\begin{gathered}
\widehat{y}=\left(y_{1}, y_{2}, \ldots, y_{p}, 0, \ldots, 0\right) \\
y^{\perp}=\left(0, \ldots, 0, y_{p+1}, \ldots, y_{n}\right) \\
\cot ^{2} A=\frac{\|\widehat{y}\|^{2}}{\left\|y^{\perp}\right\|^{2}}=\frac{\sum_{i=1}^{p} y_{i}^{2}}{\sum_{i=p+1}^{n} y_{i}^{2}} \sim \frac{p}{n-p} F_{p, n-p}
\end{gathered}
$$

11.29.1 Linear Regression Interpretation

$H_{0}: \mu=0 \Leftrightarrow H_{0}: \beta=0$ in regression of $1_{n} \sim X^{T} \Leftrightarrow$ F-test.

$$
\begin{gathered}
X \sim N_{p \times n}\left(\mu 1_{n}^{T}, I_{n} \otimes \Sigma\right) \\
S=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}=X X^{T}-n \bar{X} \bar{X}^{T} \\
\bar{X} \Perp S \\
\text { test } H_{0}: \mu=0 \\
T^{2}=\bar{X}^{T}\left\{\frac{S}{n(n-1)}\right\}^{-1} \bar{X}
\end{gathered}
$$

Theorem 11.20 Under the null hypothesis, the hotelling T^{2} statistics has $\frac{(n-1) p}{n-p} F_{p, n-p}$ distribution.
Ex: Let $a_{p * 1}$ be a fixed non-zero vector, $y=a^{T} x=\left(y_{1}, \ldots, y_{n}\right), y_{i} \sim N\left(a^{T} \mu, a^{T} \Sigma a\right)$, iid. Let $t^{2}(a)$ be the sample t-test statistics

$$
t^{2}(a)=\frac{n \bar{y}^{2}}{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}}
$$

Show that Hotelling T^{2} statistics. $T^{2}=\max _{a} t^{2}(a)$ (Homework).
Lemma 11.21 Suppose $S \sim W_{p}(\Sigma, m) m>p$, then we have

1) $\frac{a^{T} S a}{a^{T} \Sigma a} \sim \chi_{m}^{2}$ where a is a p-vector
2) $\frac{a^{T} \Sigma^{-1} a}{a^{T} S^{-1} a} \sim \chi_{m-p+1}^{2}$

Proof: 1):

$$
\begin{array}{r}
S=X X^{T}, X \sim N_{p * m}\left(0, I_{m} \otimes \Sigma\right) \\
\text { then } a^{T} X \sim N\left(0, I_{m} \otimes a^{T} \Sigma\right) \\
\text { then } a^{T} S a=\left(a^{T} X\right)\left(a^{T} X\right)^{T}
\end{array}
$$

The rest is trivial.
2): We can simply take $\Sigma=I_{p}$, WLOG, otherwise we can take $\tilde{S}=\Sigma^{-\frac{1}{2}} S\left(\Sigma^{-\frac{1}{2}}\right)^{T}, b=\Sigma^{-\frac{1}{2}} a$, then $\frac{a^{T} \Sigma^{-1} a}{a^{T} S^{-1} a}=\frac{b^{T} b}{b^{T} \tilde{S}^{-1} b}$ where $\tilde{S} \sim W_{p}\left(I_{p}, m\right)$. Also, we can assume $\|b\|=1$.

So, we only need to show for $S \sim W_{p}\left(I_{p}, m\right) u$ unit length vector $\frac{1}{u^{T} S^{-1} u} \sim \chi_{m-p+1}^{2}$. Let $\Gamma_{p * p}=\left(\Gamma_{1}, u\right)$ be a full orthogonal matrix.

$$
\begin{array}{r}
R=\Gamma^{T} S \Gamma \sim W_{p}\left(I_{p}, m\right) \\
R^{-1}=\Gamma^{T} S^{-1} \Gamma \sim\left[\begin{array}{c}
\Gamma_{1} \\
u^{T}
\end{array}\right] S^{-1}\left[\begin{array}{ll}
\Gamma_{1} & u
\end{array}\right]
\end{array}
$$

Then $u^{T} S^{-1} u=\left(R^{-1}\right)_{p p}, R=\left[\begin{array}{ll}R_{11} & R_{12} \\ R_{21} & R_{22}\end{array}\right]$. Therefore, $u^{T} S^{-1} u=\left(R_{22}-R_{21} R_{11}^{-1} R_{12}\right)^{-1} \sim \frac{1}{\chi_{m-p+1}^{2}}$
Proof: [Proof of Theorem 11.20] Now we prove under $H_{0}: T^{2} \sim(n-1) \frac{p}{n-p} F_{p, n-p}$.

$$
\begin{aligned}
T^{2} & =\bar{X}^{T}\left[\frac{S}{n(n-1)}\right]^{-1} \bar{X} \\
& =(n-1) \frac{\bar{X}^{T}\left(\frac{\Sigma}{n}\right)^{-1} \bar{X}}{\bar{X}^{T}\left(\frac{\Sigma}{n}\right)^{-1} \bar{X} / \bar{X}^{T}\left(\frac{S}{n}\right)^{-1} \bar{X}} \\
\bar{X} & \sim N_{p}\left(0, \frac{\Sigma}{n}\right) \\
\bar{X} & \Perp S \\
\frac{S}{n} & \sim W_{p}\left(\frac{\Sigma}{n}, n-1\right)
\end{aligned}
$$

Conditioning on \bar{X}, use 2), we have $\frac{\bar{X}^{T}\left(\frac{\Sigma}{n}\right)^{-1} \bar{X}}{\bar{X}^{T}\left(\frac{\Sigma}{n}\right)^{-1} \bar{X}} \sim \chi_{n-p}^{2}$ which implies $\frac{\bar{X}^{T}\left(\frac{\Sigma}{n}\right)^{-1} \bar{X}}{\bar{X}^{T}\left(\frac{s}{n}\right)^{-1} \bar{X}}$ is independent of \bar{X}. $\Rightarrow \bar{X}^{T}\left(\frac{\Sigma}{n}\right)^{-1} \bar{X} \sim \chi_{p}^{2}$. Using 1) and also independent to $\frac{\bar{X}^{T}\left(\frac{\Sigma}{n}\right)^{-1} \bar{X}}{\bar{X}^{T}\left(\frac{S}{n}\right)^{-1} \bar{X}} . \Rightarrow T^{2} \sim(n-1) \frac{p}{n-p} F_{p, n-p}$

11.30 Non Null Distribution of T^{2}

What happens to T^{2} if $\underset{\sim}{\mu} \neq \underset{\sim}{0}$?

Lemma 11.22 (Linear Invariance of T^{2}) $X_{p * n} \sim N_{p * n}\left(\mu 1_{n}, I_{n} \otimes \Sigma\right)$, $\tilde{X}=A_{p * p} X$ when $A_{p * p}$ is nonsingular, similarly we can get $\overline{\widetilde{X}}=\frac{1}{n} \sum_{i=1}^{n} \widetilde{X}_{i}, \tilde{S}=\sum_{i=1}^{n}\left(\widetilde{X_{i}}-\widetilde{\widetilde{X}}\right)\left(\widetilde{X_{i}}-\widetilde{\tilde{X}}\right)^{T}$ and $\widetilde{T}^{2}=\tilde{\widetilde{X}}\left[\frac{\widetilde{S}}{n(n-1)}\right]^{-1} \overline{\widetilde{X}}$.

Claim 11.23 $T^{2}=\widetilde{T}^{2}$

Proof:

$$
\begin{aligned}
\widetilde{\tilde{X}} & =A \bar{X} \\
\widetilde{S} & =A S A^{T} \\
\widetilde{T}^{2} & =\overline{\tilde{X}}\left[\frac{\widetilde{S}}{n(n-1)}\right]^{-1} \overline{\tilde{X}}=T^{2}
\end{aligned}
$$

This means we can even assume $\Sigma=I_{p}$ in our proof for the distribution of T^{2}.
Theorem 11.24 (Hotelling) If $X_{p * n} \sim N\left(\mu 1_{n}^{T}, I_{n} \otimes \Sigma\right), \Sigma>0$, then $T^{2}=\bar{X}\left[\frac{\widetilde{S}}{n(n-1)}\right]^{-1} \bar{X}$ has distribution $T^{2} \sim(n-1) \frac{p}{n-p} F_{p, n-p}\left(n \mu^{T} \Sigma^{-1} \mu\right)$ where $F_{n_{1}, n_{2}}\left(\delta^{2}\right)$ is the non-central F distribution. $F_{n_{1}, n_{2}}\left(\delta^{2}\right)=$ $\frac{\chi_{n_{1}}^{2}\left(\delta^{2}\right) / n_{1}}{\chi_{n_{2}}^{2} / n_{2}}$.

Chapter 12: Two-sample T Test

Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

12.31 Review

Theorem 12.25 (Hotelling's Theorem) If $X_{p \times n} \sim N\left(\mu 1_{n}^{T}, I_{n} \otimes \Sigma\right)$, then $T^{2}=\bar{X}^{T}\left(\frac{S}{n(n-1)}\right)^{-1} \bar{X}$ has distribution:

$$
T^{2} \sim(n-1) \frac{p}{n-p} F_{p, n-p}\left(n \mu^{T} \Sigma^{-1} \mu\right)
$$

where $F_{n_{1}, n_{2}}\left(\delta^{2}\right)$ is the non-normal F - distribution:

$$
F_{n_{1}, n_{2}}\left(\delta^{2}\right)=\frac{\chi_{n_{1}}^{2}\left(\delta^{2}\right) / n_{1}}{\chi_{n_{2}}^{2} / n_{2}}
$$

Proof: Take $A=\Sigma^{-1}$, so $\widetilde{X}=\Sigma^{-\frac{1}{2}} X, \widetilde{\mu}=\Sigma^{-\frac{1}{2}} \mu$. Then:

$$
\begin{gathered}
T^{2}=\widetilde{T}^{2}=\frac{n \tilde{\tilde{X}}^{T} \tilde{\tilde{X}}}{n \tilde{X}^{T} \tilde{\tilde{X}} / \tilde{X}^{T}\left(\frac{S}{n}\right)^{-1} \tilde{X}} \cdot(n-1) \\
\text { Denominator } \sim \chi_{n-p}^{2} \\
\text { Nominator } \sim N_{p}\left(\hat{\mu}, I_{p} / n\right)=\frac{1}{\sqrt{n}} N_{p}\left(\sqrt{n} \tilde{\mu}, I_{p}\right)
\end{gathered}
$$

By definition of non-central Chi-square distribution with non-central parameter:

$$
\tilde{\mu}_{1}^{2}+\tilde{\mu}_{2}^{2}+\ldots+\tilde{\mu}_{p}^{2}=\tilde{\mu}^{T} \tilde{\mu}=\mu^{T} \Sigma^{-1} \mu
$$

More generally, $y \sim N_{p}(\mu, c \Sigma)$ and is independent from $S \sim W_{p}(\Sigma, \mu)$, then:

$$
\begin{aligned}
y^{T}\left(\frac{\Delta S}{m}\right)^{-1} y & \sim \frac{m p}{m-p+1} F_{p, m-p+1}\left(\delta^{2}\right) \\
\delta^{2} & =\mu^{T} \Sigma^{-1} \mu / c
\end{aligned}
$$

12.32 Two Sample T-Test

1. Assume $X_{1}, X_{2}, \ldots, X_{n_{1}} \sim N\left(\mu_{1}, \sigma^{2}\right), Y_{1}, \ldots, Y_{n_{1}} \sim N\left(\mu_{2}, \sigma^{2}\right)$, and test the hypothesis:

$$
H_{0}: \mu_{1}=\mu_{2} \quad H_{1}: \mu_{1} \neq \mu_{2}
$$

T-statistics:

$$
\begin{aligned}
t & =\frac{\bar{y}-\bar{x}}{\sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) \frac{S_{1}+S_{2}}{n-2}}} \\
S_{1} & =\sum_{j=1}^{n_{1}}\left(X_{j}-\bar{X}\right)^{2} \\
S_{2} & =\sum_{j=1}^{n_{2}}\left(Y_{j}-\bar{Y}\right)^{2}
\end{aligned}
$$

2. Geometry of Two-Sample T-test:

$$
\begin{gathered}
d={\left(-{\frac{1}{n_{1}}}^{(1)},-{\frac{1}{n_{1}}}^{(2)}, \ldots,-{\frac{1}{n_{1}}}^{\left(n_{1}\right)},{\frac{1}{n_{2}}}^{(1)}, \ldots,{\frac{1}{n_{2}}}^{\left(n_{2}\right)}\right)}_{Z=\left(X_{1}, X_{2}, \ldots, X_{n_{1}}, Y_{1}, Y_{2}, \ldots, Y_{n_{2}}\right)}^{\bar{Y}-\bar{X}=d^{T} Z}
\end{gathered}
$$

3. Linear regression interpretation:

Regress variable Z onto vectors $(1,1, \ldots, 1)$ and vector d :

$$
\begin{gathered}
Z \sim \alpha 1_{n}+\beta d \\
\mu_{1}=\mu_{2} \Leftrightarrow \beta=0
\end{gathered}
$$

12.33 Two Sample T-Test in Multivariate Situations

1. Assume $X_{1}, X_{2}, \ldots, X_{n_{1}} \sim N\left(\mu_{1}, \Sigma\right), Y_{1}, Y_{2}, \ldots, Y_{n_{1}} \sim N\left(\mu_{2}, \Sigma\right)$, and test the hypothesis:

$$
\begin{gathered}
H_{0}: \mu_{1}=\mu_{2} \quad H_{1}: \mu_{1} \neq \mu_{2} \\
T^{2}=(\bar{y}-\bar{x})^{T}\left(\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) \frac{S_{1}+S_{2}}{n-2}\right)^{-1}(\bar{y}-\bar{x}) \\
S_{1}=\sum_{j=1}^{n_{1}}\left(X_{j}-\bar{X}\right)\left(X_{j}-\bar{X}\right)^{T} \\
S_{2}=\sum_{j=1}^{n_{2}}\left(Y_{j}-\bar{Y}\right)\left(Y_{j}-\bar{Y}\right)^{T}
\end{gathered}
$$

2. Geometric interpretation:

$$
Z_{p \times n}=(X, Y)=\left(Z_{1}^{T}, Z_{2}^{T}, \ldots, Z_{p}^{T}\right)
$$

3. Linear regression interpretation:

$$
\begin{gathered}
d={\left(-{\frac{1}{n_{1}}}^{(1)},-{\frac{1}{n_{1}}}^{(2)}, \ldots,-{\frac{1}{n_{1}}}^{\left(n_{1}\right)},{\frac{1}{n_{2}}}^{(1)}, \ldots,{\frac{1}{n_{2}}}^{\left(n_{2}\right)}\right)}_{d \sim \beta_{1} Z_{1}^{\perp}+\beta_{2} Z_{2}^{\perp}+\ldots+\beta_{n} Z_{p}^{\perp}}^{H_{0}: \mu 1=\mu 2 \Leftrightarrow \beta_{1}=\beta_{2}=\ldots=\beta_{n}=0}
\end{gathered}
$$

4. Null distribution of T^{2} :

Theorem: Under null hypothesis,

$$
T^{2} \sim(n-2) \frac{p}{n-p-1} F_{p, n-p-1}
$$

Under non-null hypothesis,

$$
\begin{gathered}
T^{2} \sim(n-2) \frac{p}{n-p-1} F_{p, n-p-1}\left(\delta^{2}\right) \\
\delta^{2}=\frac{n_{1} n_{2}}{n}\left(\mu_{2}-\mu_{1}\right)^{T} \Sigma^{-1}\left(\mu_{2}-\mu_{1}\right)
\end{gathered}
$$

12.34 Mahalanobis Distance

If $X_{p \times 1} \sim\left(\mu_{X}, \Sigma\right)$, which does not have to be Gaussian, and $Y_{p \times 1} \sim\left(\mu_{Y}, \Sigma\right)$ (share the same Σ). Then

$$
\Delta=\left[\left(\mu_{y}-\mu_{X}\right)^{T} \Sigma^{-1}\left(\mu_{Y}-\mu_{X}\right)\right]^{\frac{1}{2}}
$$

Δ is called Mahalanobis Distance between X and Y. Properties:

1. Linearly invariant: $A_{p \times p}$ is non-singular, $\tilde{\mu}_{X}=A X+B, \tilde{\mu}_{Y}=A Y+B$, then $\tilde{\Delta}=\Delta$.
2. Connection with K-L divengence: $K L\left(N_{p}\left(\mu_{x}, \Sigma\right), N_{p}\left(\mu_{Y}, \Sigma\right)\right)=1 / 2 \Delta$;
3. Decomposition of Δ^{2} : Suppose $X_{p \times 1}=\left(X_{1\left(p_{1} \times 1\right)}, X_{2\left(p_{2} \times 1\right)}\right)$, then:

$$
\begin{gathered}
\mu_{2}^{\perp}=\mu_{2}-\Sigma_{21} \Sigma_{11}^{-1} \mu_{1} \\
\Sigma_{22}^{\perp}=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \\
\Delta^{2}(X)=\mu_{1}^{T} \Sigma_{11} \mu_{1}+\left(\mu_{2}^{\perp}\right)^{T}\left(\Sigma_{22}^{\perp}\right)^{-1} \mu_{2}^{\perp}
\end{gathered}
$$

Georgia Tech

Chapter 13: Principal Component Analysis

Lecturer: Shihao Yang
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

13.35 Fundamental Lemma for PCA

Quadratic form: $\|g\|_{A}^{2}=g^{T} A g, A_{p \times p} \geq 0, A$ is symmetric, $\operatorname{rank}(A)=k$. Then

$$
A=\Gamma_{1} \Lambda \Gamma_{1}^{T}
$$

where $\Gamma_{1}=\left(\gamma_{1}, \ldots, \gamma_{k}\right), \Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$.
Enrich the orthogonal basis: $\Gamma=\left(\Gamma_{1}, \gamma_{k+1}, \ldots, \gamma_{p}\right)$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}, 0, \ldots, 0\right)$, Thus,

$$
A=\sum_{i=1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{T}
$$

$\forall g \in \mathbb{R}^{p},\|g\|_{A}^{2}=g^{T} A g=\sum_{i=1}^{p} \lambda_{i} g^{T} \gamma_{i} \gamma_{i}^{T} g=\sum_{i=1}^{p} \lambda_{i} h_{i}^{2}$, where $h_{i}=\gamma_{i}^{T} g=g^{T} \gamma_{i}=<g, \gamma_{i}>$ is the coordinate under basis $\gamma_{i}, \ldots, \gamma_{p}$.
Claim 13.26 Assume $\operatorname{rank}(A)=p$ and i.e. $\lambda_{i}>0$ for $i=1,2, \ldots, p$

$$
\begin{aligned}
& \Gamma:=\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}\right] \\
& \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right) \\
& A=\Gamma \Lambda \Gamma^{T}
\end{aligned}
$$

Then

1. $g^{*}:=\gamma_{1}$ maximizes

$$
\max _{g}\left\{\|g\|_{A}^{2}:\|g\|=1\right\}
$$

with objective value $\left\|g^{*}\right\|_{A}^{2}=\lambda_{1}$
2. $g^{*}:=\gamma_{2}$ maximizes

$$
\max _{g}\left\{\|g\|_{A}^{2}:\|g\|=1,<g, \gamma_{1}>=0\right\}
$$

with objective value $\left\|g^{*}\right\|_{A}^{2}=\lambda_{2}$
\vdots
k. $g^{*}:=\gamma_{k}$ maximizes

$$
\max _{g}\left\{\|g\|_{A}^{2}:\|g\|=1,<g, \gamma_{1}>=0,<g, \gamma_{2}>=0, \ldots,<g, \gamma_{k-1}>=0\right\}
$$

with objective value $\left\|g^{*}\right\|_{A}^{2}=\lambda_{k}$
:
p. $g^{*}:=\gamma_{p}$ minimizes $\|g\|_{A}^{2}$ on $\|g\|^{2}=1$ with objective value $\left\|g^{*}\right\|_{A}^{2}=\lambda_{p}$

Note: If $\|g\|^{2}=1$ then what is the range of $\|g\|_{A}^{2}$

$$
R(g)=\frac{\|g\|_{A}^{2}}{\|g\|^{2}}
$$

Proof: We see that

$$
\begin{aligned}
h & :=\Gamma^{T} g=\left(\begin{array}{c}
\gamma_{1}^{T} g \\
\gamma_{2}^{T} g \\
\vdots \\
\gamma_{p}^{T} g
\end{array}\right)=\left(\begin{array}{c}
h 1 \\
h 2 \\
\vdots \\
h_{p}
\end{array}\right) \\
\|g\|_{A}^{2} & :=g^{T} A g=g^{T} \Gamma \Lambda \Gamma^{T} g \\
& =\sum_{i=1}^{p} \lambda_{i} h_{i}^{2} \\
\therefore\|h\|_{2}^{2} & =h^{T} h=g^{T} \Gamma \Gamma^{T} g=g^{T} g=1
\end{aligned}
$$

So given $\|h\|_{2}^{2}=1$, what is the range of $\|g\|_{A}^{2}=\sum_{i=1}^{p} \lambda_{i} h_{i}^{2}$?

1. $h=[1 ; 0 ; 0 ; \ldots ; 0]$ maximizes $\sum_{i=1}^{p} \lambda_{i} h_{i}^{2}$ to be λ_{1}
2. $g^{T} \gamma_{1}=0 \Longleftrightarrow h_{1}=0 \Longleftrightarrow h=[0 ; \square ; \square ; \ldots ; \square]$

Given $h_{1}=0, h=[0 ; 1 ; 0 ; \ldots ; 0]$ maximizes $\sum_{i=1}^{p} \lambda_{i} h_{i}^{2}$ to be λ_{2} \vdots
k. $g^{T} \gamma_{1}=0, g^{T} \gamma_{2}=0, \ldots, g^{T} \gamma_{k-1}=0 \Longleftrightarrow h_{1}=h_{2}=\cdots=h_{k-1}=0$

Given $h_{1}=h_{2}=\cdots=h_{k-1}=0, h=[0 ; 0 ; 0 ; \ldots ; \underbrace{1}_{k \text {-th }} ; \ldots ; 0] \operatorname{maximizes} \sum_{i=1}^{p} \lambda_{i} h_{i}^{2}$ to be λ_{k} \vdots
p. $h=[0 ; 0 ; \ldots ; 0 ; 1]$ minimizes $\sum_{i=1}^{p} \lambda_{i} h_{i}^{2}$ to be λ_{p}

13.35.1 Simultaneous Orthogonality

Since

$$
g^{T} A \gamma_{i}=g^{T}\left(\sum_{j=1}^{p} \lambda_{j} \gamma_{j} \gamma_{j}^{T}\right) \gamma_{i}=\lambda_{i}\left(g^{T} \gamma_{i}\right)
$$

Then we have

$$
g^{T} A \gamma_{i}=0 \Longleftrightarrow g^{T} \gamma_{i}=0
$$

which means

$$
<g, \gamma_{i}>=0 \Longleftrightarrow<g, \gamma_{i}>_{A}=0
$$

Thus, $g^{T} \gamma_{i}=0$ can be replaced by $<g, \gamma_{i}>_{A}=0$

13.36 Principal Components in Sample Space

Given sample

$$
\begin{aligned}
X_{p \times n} & =\left[\vec{X}_{1}, \vec{X}_{2}, \ldots, \vec{X}_{n}\right] \\
& =\left(\begin{array}{c}
\vec{V}_{1}^{T} \\
\vec{V}_{2}^{T} \\
\vdots \\
\vec{V}_{p}^{T}
\end{array}\right)
\end{aligned}
$$

Assume $\mathbb{E}\left[\vec{X}_{i}\right]=0, S=X X^{T}$, with spectral decomposition

$$
\begin{aligned}
S & =\Gamma D \Gamma^{T} \\
D & =\operatorname{diag}\left(d_{1}, \ldots, d_{p}\right), d_{1} \geq d_{2} \geq \ldots \geq d_{p}>0 \\
\Gamma & =\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}\right]
\end{aligned}
$$

Definition 13.27

1. $\vec{Y}_{j}=\gamma^{T} X$ is known as the j-th principal component of X
2. γ_{j} is known as the j-th principal factor
3. $\operatorname{Let} \Gamma(j):=\left[\gamma_{1}, \gamma_{2}, \ldots, \gamma_{j}\right]$

Then

$$
\vec{Y}(j)=[\Gamma(j)]^{T} X=\left(\begin{array}{c}
\gamma_{1}^{T} X \\
\vdots \\
\gamma_{j}^{T} X
\end{array}\right)=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{j}
\end{array}\right)
$$

is called the j-th principal component representation
4. The i-th component of the vector \vec{Y}_{j} is called the loading of \vec{X}_{i} on γ_{j}

$$
\left(\vec{Y}_{j}\right)_{i}=\gamma_{j}^{T} \vec{X}_{i}
$$

Theorem 13.28 Among all p-dimensional unit vectors \vec{g}, the first principal factor γ_{1} maximizes

$$
\left.\sum_{i=1}^{n}\left(\vec{g}^{T} \vec{X}_{i}\right)^{2}=\left\|\vec{g}^{T} X\right\|^{2} \quad \text { (Sample Variance }\right)
$$

where the maximum is d_{1}
Then among all unit vectors \vec{g} satisfying $\vec{g}^{T} \gamma_{1}=0$ or equivalently

$$
\vec{g}^{T} S \vec{g}=0 \Longleftrightarrow \vec{g}^{T} X X^{T} \vec{g}=0 \Longleftrightarrow \operatorname{Corr}\left(\vec{g}^{T} X, \gamma_{1}^{T} X\right)=0
$$

The second principal factor γ_{2} maximizes $\underbrace{\left\|g^{T} X\right\|_{2}^{2}}_{\text {sample variance }}$ and the maximum is d_{2}

Chapter 14: Principal Component Analysis

Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

14.37 Basic notions

$$
Y(j)=\Gamma(j)^{T} X=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
\gamma_{1}^{T} X \\
\gamma_{2}^{T} X \\
\vdots \\
\gamma_{n}^{T} X
\end{array}\right)
$$

where $Y(j)$ represents $X_{p \times n}$ in lower dimension $j \times n$.

$$
\begin{gathered}
\operatorname{Tr}\left(Y(j) Y(j)^{T}\right)=\sum_{k=1}^{j} \sum_{i=1}^{n} Y_{k i}^{2}, Y=Y(p) \\
Y Y^{T}=\left(\Gamma^{T} X\right)\left(\Gamma^{T} X\right)^{T}=\Gamma^{T} X X^{T} \Gamma=\Gamma^{T} S \Gamma=\Gamma^{T} \Gamma D \Gamma^{T} \Gamma=D \\
\sum_{k=1}^{p} \sum_{i=1}^{n} Y_{k i}^{2}=\sum_{k=1}^{p} d_{k} \\
\sum_{k=1}^{j} \sum_{i=1}^{n} Y_{k i}^{2}=\operatorname{Tr}\left(Y(j) Y(j)^{T}\right)=\operatorname{tr}\left(\Gamma(j)^{T} X X^{T} \Gamma(j)\right)=\operatorname{tr}\left(\Gamma(j)^{T} \Gamma D \Gamma^{T} \Gamma(j)\right)=\sum_{k=1}^{j} d_{k}
\end{gathered}
$$

as

$$
\Gamma^{T} \Gamma(j)=\left(\begin{array}{c}
\gamma_{1}^{T} \\
\vdots \\
\gamma_{p}^{T}
\end{array}\right)\left(\begin{array}{lll}
\gamma_{1} & \ldots & \gamma_{j}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \ldots & 1 \\
0 & 0 & \ldots & 0
\end{array}\right)_{p \times j}
$$

The proportion of variation explained by $Y(j)$ is $\frac{\sum_{k=1}^{j} d_{k}}{\sum_{k=1}^{p} d_{k}}$.

14.38 Population principle components

Suppose X is a random vector in $\mathbb{R}^{p}, X \sim(\mu, \Sigma)$, subtracting $\mu \rightarrow X \sim(0, \Sigma)$ (does not have to be Gaussian). Spectral decomposition $\Sigma=\Gamma \Lambda \Gamma^{T}=\sum_{i=1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{T}$, where $\Gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$ and $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p} \geq 0$.

Theorem 14.29 (1) $g=\gamma_{1}$ maximize $\operatorname{Var}\left(g^{T} X\right)$ subject to $\|g\|=1$, and the maximum is λ_{1}. (2) Among all unit vectors satisfying $g^{T} \gamma_{1}=0$ (equivalently, $\operatorname{Cov}\left(g^{T} X, \gamma_{1}^{T} X\right)=0 \Leftrightarrow g^{T} \Sigma \gamma_{1}=0$), $g=\gamma_{2}$ maximize $\operatorname{Var}\left(g^{T} X\right)$, with maximum being λ_{2}.

Proof:

$$
\operatorname{Cov}\left(g^{T} X, h^{T} X\right)=g^{T} \Sigma h
$$

Then use lemma.

Definition $14.30 y_{j}=\gamma_{j}^{T} X \rightarrow j$-th principal component of X.

$$
y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right)=\left(\begin{array}{c}
\gamma_{1}^{T} \\
\vdots \\
\gamma_{p}^{T}
\end{array}\right) X=\Gamma^{T} X
$$

$\operatorname{Cov}(y)=\operatorname{Cov}\left(\Gamma^{T} X\right)=\Lambda$

14.39 Best linear prediction

Theorem 14.31 Suppose $X \sim(0, \Sigma), \Sigma=\Gamma \Lambda \Gamma^{T}, \lambda_{i}>0, \forall i$. Let $\Gamma(j)=\left(\Gamma_{1}, \ldots, \Gamma_{j}\right)$, then
(a) The best linear prediction of X in terms of $Y(j)=\Gamma(j)^{T} X$ is $\hat{X}=\sum_{i=1}^{j} \gamma_{j} y_{j}$.
(b) The residual $X^{\perp}=X-\hat{X}$ has covariance matrix

$$
\Sigma_{(j)}^{\perp}=\sum_{i=j+1}^{p} \lambda_{i} \gamma_{i} \gamma_{i}^{T} \text { with } \operatorname{tr}\left(\Sigma_{(j)}^{\perp}\right)=\sum_{i=j+1}^{p} \lambda_{i}
$$

(c) For any matrix $A_{j \times p}$, Let $Z=A X$ and $X_{Z}^{\perp}=X-\Sigma_{X Z} \Sigma_{Z Z}^{-1} Z$, we have

$$
\operatorname{tr}\left(\Sigma_{Z}^{\perp}\right)=\operatorname{tr}\left(\operatorname{Cov}\left(X_{Z}^{\perp}\right)\right) \geq \sum_{i=j+1}^{p} \lambda_{i}
$$

The equality holds if and only if $A=\Gamma(j)^{T}$.

14.40 PCA and SVD

$X_{p \times n}=\left(X_{1}, \ldots, X_{n}\right)=\left(\begin{array}{ccc}\ldots & V_{1}^{T} & \ldots \\ \ldots & \vdots & \ldots \\ \ldots & V_{p}^{T} & \ldots\end{array}\right)$ Singular value decomposition:

$$
X=L_{p \times r} C_{r \times r} R_{r \times n}^{T}
$$

Where

$$
\begin{gathered}
L=\left(l_{1}, \ldots, l_{r}\right), C=\operatorname{diag}\left(c_{1}, \ldots, c_{r}\right), R=\left(r_{1}, \ldots, r_{r}\right) \\
c_{1} \geq c_{2} \geq \ldots \geq c_{r}>0, r=\operatorname{rank}(X)
\end{gathered}
$$

Then

$$
\begin{gathered}
L_{\text {col }}(X)=L_{\text {col }}(L), L_{\text {row }}(X)=L_{\text {row }}\left(R^{T}\right)=L_{\text {col }}(R) \\
S=X X^{T}=L C^{2} L^{T}, T=X^{T} X=R C^{2} R^{T}, \text { spectral decomposition }
\end{gathered}
$$

So L is the same as the principal factor.

$$
\begin{gathered}
L(j)=\left(l_{1}, \ldots, l_{j}\right), C(j)=\operatorname{diag}\left(c_{1}, \ldots, c_{j}\right), R(j)=\left(r_{1}, \ldots, r_{j}\right) \\
X=\sum_{i=1}^{r} l_{i} c_{i} r_{i}^{T}, \hat{X}(j)=\sum_{i=1}^{j} l_{i} c_{i} r_{i}^{T}
\end{gathered}
$$

Lemma 14.32

$$
\hat{X}(j)=L(j) C(j) R(j)^{T}=L(j) L(j)^{T} X=X R(j) R(j)^{T}
$$

where $L(j) L(j)^{T}$ is the projection matrix onto $L_{\text {col }}\left(l_{1}, \ldots, l_{j}\right)$, first j principal factor.
Define $\hat{X}_{(j)}^{\perp}=X-\hat{X}(j)$ the residual of the approximation.
Define matrix norm: $<A, B>=\operatorname{tr}\left(A B^{T}\right)=\sum_{i=1}^{p} \sum_{j=1}^{q} a_{i j} b_{i j}$ and $\|A\|=<A, A \gg^{\frac{1}{2}}$
Theorem 14.33 Among all j-dimensional subspace of $\mathbb{R}^{p}, L\left(l_{1}, \ldots, l_{j}\right)$ maximized the projected square length, and minimized the total orthogonal square residuals.

$$
\begin{gathered}
\hat{X}(j)=L(j) C(j) R(j)^{T},(\hat{X}(j))_{i}=\sum_{i=1}^{j} l_{k} c_{k} r_{i k} \\
X_{i}=\sum_{i=1}^{j} l_{k} c_{k} r_{i k} \\
Y=L^{T} X=C R^{T}
\end{gathered}
$$

14.41 Metric eigenvalues

$$
Q(g)=\frac{\|g\|_{A}^{2}}{\|g\|_{B}^{2}}=\frac{g^{T} A g}{g^{T} B g}, A \geq 0, B>0
$$

Define $\tilde{g}=B^{\frac{1}{2}} g, g=B^{-\frac{1}{2}} \tilde{g}$. Then

$$
Q(g)=\frac{\tilde{g}^{T} B^{-\frac{1}{2}} A B^{-\frac{1}{2}} \tilde{g}}{\tilde{g}^{T} \tilde{g}}=\frac{\tilde{g}^{T} \tilde{A} \tilde{g}}{\tilde{g}^{T} \tilde{g}}, \text { where } \tilde{A}=B^{-\frac{1}{2}} A B^{-\frac{1}{2}}
$$

Consider spectral decomposition of $\tilde{A}=B^{-\frac{1}{2}} A B^{-\frac{1}{2}}=\Gamma \lambda \Gamma^{T}$, where

$$
\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}, 0, \ldots, 0\right), r=\operatorname{rank}(\tilde{A})=\operatorname{rank}(A)
$$

and $\Gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right)$

$$
\xi_{i}=B^{-\frac{1}{2}} \gamma_{i}, \Xi=B^{-\frac{1}{2}} \Gamma
$$

Simultaneously diagonalization:

$$
\Xi A \Xi=\Lambda,<\xi_{i}, \xi_{j}>_{A}=\lambda_{i} \delta_{i j}
$$

where $\delta_{i j}=1$ for $i=j$ and $\delta_{i j}=0$ for $i \neq j$. Similarly,

$$
\begin{gathered}
\Xi B \Xi=I_{p},<\xi_{i}, \xi_{j}>_{B}=\delta_{i j} \\
A \Xi=\left(\Xi^{T}\right)^{-1} \Lambda, B \Xi=\left(\Xi^{T}\right)^{-1}, A \Xi=B \Xi \Lambda, A \xi_{i}=\lambda_{i} B \xi_{i}
\end{gathered}
$$

Definition 14.34 The values $\lambda_{1}, \ldots, \lambda_{p}$ are called the eigenvalues of A in the B metric, ξ_{1}, \ldots, ξ_{p} are the corresponding eigenvectors $\Leftrightarrow \operatorname{det}(A-\lambda B)=0$.

Notions: $L_{s}^{\perp}\left(v_{1}, \ldots, v_{j}\right)=\left\{v: v^{T} s v_{i}=0, i=1, \ldots, j\right\}$. Then we have the corollary of the fundamental lemma:
For $Q(g)=\frac{\|g\|_{A}^{2}}{\|g\|_{B}^{2}}, g=\xi_{1}$ maximizes $Q(g) . \cdots \cdots$

Georgia Tech

Chapter 15: LDA and Critical Angles
 Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

15.42 Fisher's Linear Discriminant Analysis

Suppose we have $X_{1} \sim N_{p}\left(\mu_{1}, \Sigma\right)$ and $X_{2} \sim N_{p}\left(\mu_{2}, \Sigma\right)$. We are interested in a 1-dimensional scalar that provides the maximum separation of X_{1} and X_{2}. For example, see Figure 15.42.

Figure 15.8: Projecting the data in the downward direction provides more variable separation than projecting in the rightward direction.

In order to analyze this problem mathematically, we let $Y_{1}=g^{T} X_{1}$ and $Y_{2}=g^{T} X_{2}$ for some vector g. Then, $Y_{1} \sim N_{p}\left(g^{T} \mu_{1}, g^{T} \Sigma g\right)$ and $Y_{2} \sim N_{p}\left(g^{T} \mu_{2}, g^{T} \Sigma g\right)$. We want to maximize $\frac{\left(g^{T} \mu_{1}-g^{T} \mu_{2}\right)^{2}}{g^{T} \Sigma g}$. To simplify, we let $\delta=\mu_{1}-\mu_{2}, A=\delta \delta^{T}$, and $B=\Sigma$. Then, we consider the maximization of $Q(g)=\frac{g^{T} A g}{g^{T} B g}$.

From the lemma in Lecture 14 , we let $\tilde{A}=B^{-1 / 2} A B^{-1 / 2}=\Sigma^{-1 / 2} \delta \delta^{T} \Sigma^{-1 / 2}$ and $\gamma_{1}=\Sigma^{-1 / 2} \delta$. We now have $\xi_{1}=B^{-1 / 2} \gamma_{1}=\Sigma^{-1} \delta$ and $\tilde{A} \gamma_{1}=\Sigma^{-1 / 2} \delta \delta^{T} \Sigma^{-1 / 2} \Sigma^{-1 / 2} \delta=\lambda_{1} \gamma_{1}$ where $\lambda_{1}=\delta^{T} \Sigma^{-1} \delta$. Because $\operatorname{rank}(\tilde{A})$ $=1$, we also know $\lambda_{2}=\lambda_{3}=\ldots=0$. The max value of $Q(g)$ is $\lambda_{1}=\delta^{T} \Sigma^{-1} \delta=\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)$ which is exactly the Mahalanobis Distance.

15.43 Critical Angles

Suppose there are two subspaces \mathcal{L}_{B} and \mathcal{L}_{A}, of dimension p and q respectively, located in an n-dimensional space, as seen in Figure 15.43. We are interested in the smallest angles between subspaces, or critical angles.

To represent \mathcal{L}_{B}, we let $X_{p \times n}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(v_{1}, v_{2}, \ldots, v_{p}\right)^{T}$. Then, $\mathcal{L}_{B}=\mathcal{L}_{\text {row }}(X)$. \mathcal{L}_{A} is a q-dimensional subspace of \mathbb{R}^{n}, represented by projection matrix $\left(P_{A}\right)_{n \times n}$. For all $u \in \mathcal{L}_{B}$, we can write the row vector $u=g^{T} X$ for some vector g. Given u, the projection of u onto $\mathcal{L}_{A} \hat{u}$, has the smallest angle

Figure 15.9: The two subspaces shown here share a line in n-dimensional space. The smallest angle between these two spaces is 0 .

between u and \mathcal{L}_{A} (i.e. smallest $\cos ^{2}(\theta(g))$ where $\theta(g)$ is the angle between u and $\left.\hat{u}\right)$. Mathematically, we represent this as follows.

$$
\begin{aligned}
\hat{u}=u P_{A} & =g^{T} X P_{A}=g^{T} \hat{X} \text { where } \hat{X}=X P_{A} \\
\cos ^{2}(\theta(g)) & =\frac{\|\hat{u}\|^{2}}{\|u\|^{2}}=\frac{g^{T} \hat{X} \hat{X}^{T} g}{g^{T} X X^{T} g}=\frac{g^{T} X P_{A} X^{T} g}{g^{T} X X^{T} g}
\end{aligned}
$$

We now define $A=X P_{A} X^{T}, B=X X^{T}$, and $\tilde{A}=B^{-1 / 2} A B^{-1 / 2}$. Then, $B-A=X\left(I-P_{A}\right) X_{\tilde{\sim}}^{T}=$ $X P_{A}^{\perp} X^{T} \geq 0$ and $B^{-1 / 2}(B-A) B^{-1 / 2}=I-\tilde{A} \geq 0$. The latter inequality implies the eigenvalues of \tilde{A} are less than or equal to 1 . We can organize these eigenvalues such that $1 \geq \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p} \geq 0$. The results are as follows.

1. $g=\xi_{1}$ and $u_{1}=\xi_{1}^{T} X$ maximizes $\cos ^{2}(\theta(g))=\lambda_{1}$
2. $g=\xi_{2}$ and $u_{1}=\xi_{2}^{T} X$ maximizes $\cos ^{2}(\theta(g))=\lambda_{2}$ subject to $g^{T} A \xi_{1}=0, g^{T} B \xi_{1}=0$
k. $g=\xi_{k}$ and $u_{1}=\xi_{k}^{T} X$ maximizes $\cos ^{2}(\theta(g))=\lambda_{k}$ subject to $g^{T} A \xi_{i}=0, g^{T} B \xi_{i}=0 \forall i \in\{1,2, \ldots, k-1\}$
p. $g=\xi_{p}$ and $u_{1}=\xi_{p}^{T} X$ maximizes $\cos ^{2}(\theta(g))=\lambda_{p}$ subject to $g^{T} A \xi_{i}=0, g^{T} B \xi_{i}=0 \forall i \in\{1,2, \ldots, p-1\}$

Geometry $(p=g=2, n=3)$

$$
y_{2} \perp y_{1}, \quad \hat{y_{2}} \perp \hat{y_{1}}
$$

$$
Y=\Xi^{T} X=\left[\begin{array}{c}
\xi_{1}^{T} X \\
\vdots \\
\xi_{p}^{T} X
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right]
$$

$$
\hat{Y}=\Xi^{T} \hat{X}=\left[\begin{array}{c}
\xi_{1}^{T} \hat{X} \\
\vdots \\
\xi_{p}^{T} \hat{X}
\end{array}\right]=\left[\begin{array}{c}
\hat{y}_{1} \\
\vdots \\
\hat{y}_{p}
\end{array}\right]=\Xi^{T} X P_{A}
$$

$$
Y Y^{T}=\Xi^{T} X X^{T} \Xi=\Xi^{T} B=I_{p}
$$

$$
\hat{Y} \hat{Y}^{T}=\Xi^{T} X P_{A} X^{T} \Xi=\Xi^{T} A=\Lambda
$$

For pairs $\left(y_{k}, \hat{y}_{k}\right), k=1,2, \ldots, p$
(1) The $y_{k}^{\prime} s$ are mutually orthogonal $\left\|y_{k}\right\|^{2}=1$.
(2) The $\hat{y}_{k}^{\prime} s$ are mutually orthogonal $\left\|\hat{y}_{k}\right\|^{2}=\lambda_{k}$.
(3) All $2 p$ vectors are mutually orthogonal $<y_{i}, \hat{y}_{j}>=0$ if $i \neq j$.
(4) The smallest possible angle between \mathcal{L}_{A} and \mathcal{L}_{B} is between y_{1}, \hat{y}_{1}.

The next smallest angle is achieved by y_{2}, \hat{y}_{2}.
From (1)-(3) we get that:

$$
\left[\begin{array}{c}
Y \\
\hat{Y}
\end{array}\right]\left[Y^{T} \hat{Y}^{T}\right]=\left[\begin{array}{cc}
I_{p} & \Lambda \\
\Lambda & \Lambda
\end{array}\right]
$$

Comments:

(1) The y and \hat{y} are intrinsic to \mathcal{L}_{A} and \mathcal{L}_{B}. They do not depend on the choices of the base.

$$
X_{p \times n}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{p}
\end{array}\right]
$$

(2) You can start from \mathcal{L}_{A}, then project onto \mathcal{L}_{B} and get the same answer.

Definition $15.35 \theta_{1}, \theta_{2}, \ldots, \theta_{p}$ are called critical angles between \mathcal{L}_{A} and \mathcal{L}_{B}.

Chapter 16: Enter the title
 Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

16.44 Canonical Correlations

$R_{1}, R_{2}, \ldots, R_{p}$ and $S_{1}, S_{2}, \ldots, S_{q}$ are random variables, $R=\left[R_{1}, \cdots, R_{p}\right]^{\top}, S=\left[S_{1}, \cdots, S_{q}\right]^{\top}$. Assume that $\mathbb{E}(R)=\mathbb{E}(S)=0, \Sigma_{R R(p \times p)}>0, \Sigma_{S S(q \times q)}>0$.

Recall:

$$
\langle u, v\rangle=\operatorname{Cov}(u, v), \quad\langle R, S\rangle=\Sigma_{R S}
$$

$\hat{R}=\Sigma_{R S} \Sigma_{S S}^{-1} S$ is the linear combination of S that has the highest correlation with $R \equiv R$ projected to space span by S.

$$
\begin{aligned}
\rho^{2}(g) & =\frac{g^{T} A g}{g^{T} B g} \\
g^{T} B g & =\operatorname{Cov}\left(g^{T} R, g^{T} R\right) \\
g^{T} A g & =\operatorname{Cov}\left(g^{T} \hat{R}, g^{T} \hat{R}\right)
\end{aligned}
$$

where $A=\Sigma_{\hat{R} \hat{R}}=\Sigma_{R S} \Sigma_{S S}^{-1} \Sigma_{S R}$ and $B=\Sigma_{R R}$. We want to find g such that $\rho^{2}(g)$ is maximized.

$$
\begin{aligned}
& \tilde{A}=B^{-1 / 2} A B^{-1 / 2}=\Sigma_{R R}^{-1 / 2} \Sigma_{R S} \Sigma_{S S}^{-1} \Sigma_{S R} \Sigma_{R R}^{-1 / 2} \\
& \tilde{A}=\Gamma \Lambda \Gamma^{T} \\
& \Xi=B^{-1 / 2} \Gamma=\Sigma_{R R}^{-1 / 2} \Gamma
\end{aligned}
$$

Theorem 16.36

1. The greatest correlation ${ }^{2}$ is achieved by

$$
Y_{1}=\xi_{1}^{T} R \quad \text { and } \quad \hat{Y}_{1}=\xi_{1}^{T} \hat{R}=\xi_{1}^{T} \Sigma_{R S} \Sigma_{S S}^{-1} S
$$

the value is λ_{1}.
2. The second greatest correlation ${ }^{2}$ between linear combination of R and linear combination of S is

$$
Y_{2}=\xi_{2}^{T} R \quad \text { and } \quad \hat{Y}_{2}=\xi_{2}^{T} \hat{R}
$$

subject to

$$
\begin{aligned}
& \operatorname{Cov}\left(Y_{2}, Y_{1}\right)=0, \quad \operatorname{Cov}\left(\hat{Y}_{2}, \hat{Y}_{1}\right)=0 \\
& \operatorname{Cov}\left(Y_{2}, \hat{Y}_{1}\right)=0, \quad \operatorname{Cov}\left(\hat{Y}_{2}, Y_{1}\right)=0
\end{aligned}
$$

3....

Definition $16.37 \sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}, \ldots, \sqrt{\lambda_{p}}$ is called the canonical correlation between R and S, when $p=1$. This is multiple correlation.

16.45 Projection ratio and critical angles

p-dim subspace \mathcal{L}_{B}
p - dim volume of $C: \operatorname{Vol}_{p}(C)$
q-dim subspace $(p \leq q)$
$p-\operatorname{dim}$ volume of $\hat{C}: \operatorname{Vol}_{p}(\hat{C})$

Theorem 16.38 The p-dim volume of C and \hat{C} are related by $\operatorname{Vol}_{p}(\hat{C})=\operatorname{Vol}_{p}(C) \prod_{k=1}^{p} \cos \theta_{k}$, where $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ are critical angles.

Proof:

1. Rectangles:

$$
\begin{aligned}
& \operatorname{Vol}(\hat{C})=\left\|\hat{y}_{1}\right\| \cdot\left\|\hat{y}_{2}\right\| \\
& \operatorname{Vol}(C)=\left\|y_{1}\right\| \cdot\left\|y_{2}\right\| \\
& \frac{\operatorname{Vol}(\hat{C})}{\operatorname{Vol}(C)}=\frac{\mid \hat{y}_{1} \|}{\left\|y_{1}\right\|} \cdot \frac{\mid \hat{y}_{2} \|}{\left\|y_{2}\right\|}=\cos \theta_{1} \cdot \cos \theta_{2}
\end{aligned}
$$

2. Project what we have onto axis \hat{y}_{1}, \hat{y}_{2}.

3. What we get can be approximated by rectangles, since \hat{C} consists still only of rectangles.

Georgia Tech

Chapter 17: Classification
 Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
There are k population group $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$, each has probability density function $f_{j}(x), j=1,2, \ldots, k$. The goal: given a future observation x, allocate x into one of the groups.

Classification rule: A division of R^{p} into disjoint regions $R_{1}, R_{2}, \ldots, R_{k}$ such that $\bigcup_{i=1}^{k} R_{i}=R^{p}$ (or the full space). Therefore, allocate x into π_{j} if $x \in R_{j}$.

17.46 Maximum Likelihood Classification Rule

Allocate x to the group that gives the largest likelihood to $x, L(x)=\operatorname{argmax}\left\{f_{j}(x)\right\}$

17.46.1 Example: Multinomial distribution $(k=2)$

$$
\begin{aligned}
& \Pi_{1}: \operatorname{multi}\left(n, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{g}\right) \\
& \Pi_{2}: \operatorname{multi}\left(n, \beta_{1}, \beta_{2}, \ldots, \beta_{g}\right) \\
& \frac{n!}{x_{1}!x_{2}!\ldots x_{g}!} \prod_{i=1}^{g} \alpha_{i}^{x_{i}} \rightarrow \text { Group } 1 \text { likelihood } \\
& \frac{n!}{x_{1}!x_{2}!\ldots x_{g}!} \prod_{i=1}^{g} \beta_{i}^{x_{i}} \rightarrow \text { Group } 2 \text { likelihood } \\
\Longrightarrow & \log \text { likelihood ratio }=\sum_{i=1}^{g} x_{i} \log \left(\frac{\alpha_{i}}{\beta_{i}}\right) \begin{cases}>0 & x \text { to } \pi_{1} \\
<0 & x \text { to } \pi_{2}\end{cases}
\end{aligned}
$$

where $\sum_{i=1}^{g} x_{i} \log \left(\frac{\alpha_{i}}{\beta_{i}}\right)$ is linear boundary.

17.46.2 Example: Fisher's Linear Discriminant Analysis

Group $\Pi_{i}: X \sim N_{p}\left(\mu_{i}, \Sigma\right)$.
Maximum likelihood classifier (general likelihood rule):

$$
L(X)=\arg \min _{j}\left(X-\mu_{j}\right)^{\top} \Sigma^{-1}\left(X-\mu_{j}\right)
$$

For specific case: $K=2$,

$$
L(X):\left(\mu_{1}-\mu_{2}\right)^{\top} \Sigma^{-1}\left(X-\frac{\mu_{1}+\mu_{2}}{2}\right) \begin{cases}>0 & \rightarrow X \in \Pi_{1} \\ <0 & \rightarrow X \in \Pi_{2}\end{cases}
$$

In other words, if define $\delta:=\mu_{1}-\mu_{2}$, the classifier is checking the inner product of $\Sigma^{-1} \delta$ and $\left(X-\frac{\mu_{1}+\mu_{2}}{2}\right)$ to classify X. The following is a pictorial demonstration.

Figure 17.10: Linear Discriminant Analysis Example

Projection direction: $\Sigma^{-1} \delta$

17.47 Bayesian Perspective

Joint model (X, Y), where Y is the class label. Denote
Likelihood: $f_{j}(X)=f(X \mid Y=j)$;
Prior: $\pi_{j}=\pi(Y=j)$;
Posterior: $P(Y=j \mid X)$.
For specific case: $K=2$, the \log posterior ratio is

$$
\begin{aligned}
& \log \frac{P(Y=0 \mid X)}{P(Y=1 \mid X)}=\log \frac{\pi_{0} \cdot f(X \mid Y=0)}{\pi_{1} \cdot f(X \mid Y=1)}=\log \frac{\pi_{0}}{\pi_{1}}+\log \frac{f(X \mid Y=0)}{f(X \mid Y=1)} \\
&(\text { in Normal case } \rightarrow)=\log \frac{\pi_{0}}{\pi_{1}}+X^{\top} \Sigma^{-1} \delta+\text { constant. } \\
& \Rightarrow P(Y=j \mid X) \propto \pi(Y=j) \cdot f(X \mid Y=j) . \quad \text { (i.e. posterior } \propto \text { prior • likelihood) }
\end{aligned}
$$

17.48 Sample Version

In practice, we do not know θ in the $f_{j}(X \mid \theta)$. Simple solution is to get an estimation $\hat{\theta}$ and plug in $\theta \leftarrow \hat{\theta}$. (For example, in linear discriminant analysis analysis, $\theta=\left(\mu_{1}, \mu_{2}, \Sigma\right)$ and $\hat{\theta}=\left(\hat{\mu_{1}}, \hat{\mu_{2}}, \hat{\Sigma}\right)$.)
Issue: need to consider the variation in $\hat{\theta}$ caused by estimation uncertainty. This issue is hard to address using frequentist approach but can be well addressed under Bayesian perspective.
$\hat{\theta}$ in Bayesian comes from $P_{j}(\theta \mid X)$ where X is in the j th group. Then the classification rule

$$
L_{j}\left(X_{n e w} \mid X\right)=\int f_{j}\left(X_{n e w} \mid \theta\right) P_{j}(\theta \mid X) d \theta
$$

integrates variations of θ. It is called posterior predictive distribution.
The advantage of Bayesian setting over frequentist is that Bayesian setting incorporates the variation of θ in the posterior predictive distribution, which frequentist cannot do.

17.49 Logistic Regression

With $Y \in\{1,2, \ldots, K\}$ and X, logistic regression has the following form:

$$
\begin{gathered}
P(Y=k \mid X=x)=\frac{\exp \left\{\beta_{k_{0}}+\beta_{k}^{\top} x\right\}}{1+\sum_{l=1}^{K-1} \exp \left\{\beta_{k_{0}}+\beta_{l}^{\top} x\right\}}, k=1,2, \ldots, K-1 \\
P(Y=K \mid X=x)=\frac{1}{1+\sum_{l=1}^{K-1} \exp \left\{\beta_{k_{0}}+\beta_{l}^{\top} x\right\}}
\end{gathered}
$$

Equivalently (relative form):

$$
\log \frac{P(Y=k \mid X=x)}{P(Y=K \mid X=x)}=\beta_{k_{0}}+\beta_{k}^{\top} x, k=1,2, \ldots, K-1
$$

Let's assume $K=2$ from now on. Then

$$
\log \frac{P(Y=1 \mid X=x)}{P(Y=2 \mid X=x)}=\beta_{0}+\beta_{1}^{\top} x
$$

Recall Linear Discriminant Analysis (from previous notes), the decision boundary is

$$
\left(\mu_{1}-\mu_{2}\right)^{\top} \Sigma^{-1}\left(X-\frac{\mu_{1}+\mu_{2}}{2}\right) \begin{cases}>0 & \rightarrow X \in \Pi_{1} \\ <0 & \rightarrow X \in \Pi_{2}\end{cases}
$$

In the posterior form:

$$
\begin{aligned}
\log \frac{P(Y=1 \mid X=x)}{P(Y=2 \mid X=x)} & =\log \frac{\pi_{0}}{\pi_{1}}+\log \frac{f(x \mid Y=0)}{f(x \mid Y=1)}=\mathrm{constant}+x^{\top} \Sigma^{-1} \delta\left(\text { note }: \delta=\mu_{1}-\mu_{2}\right) \\
& =\alpha_{0}+\alpha_{1}^{\top} x
\end{aligned}
$$

Therefore, Logistic Regression and Linear Discriminant Analysis both use hyperplane as decision boundary. However, they estimate the coefficients differently.

- Linear Discriminant Analysis: $(X \mid Y=k) \sim N\left(\mu_{k}, \Sigma\right)$. The full likelihood is

$$
P(X, Y)=P(X \mid Y) \cdot P(Y)
$$

In estimation, the method gets $\hat{\mu}_{k}, \hat{\Sigma}$ for boundary $\hat{\Sigma}^{-1} \hat{\delta}$ to maximize full likelihood.

- Logistic Regression: The partial likelihood is

$$
\prod_{i} P\left(Y=y_{i} \mid X=x_{i}\right)
$$

In estimation, the method gets β_{0}, β_{1} directly to maximize partial likelihood.
Comments on the comparison of these two methods:

1. Linear Discriminant Analysis: model bottom up (model the distribution of each group $P(X \mid Y=k)$, more statistical).

$$
P(X, Y)=P(X \mid Y) \cdot P(Y), \quad P(X)=\int P(X, Y) d Y
$$

$P(X)$ is normal mixture.
If your underlying data is close to normal, then Linear Discriminant Analysis will be more efficient.
2. Logistic Regression: model top down (model partial data $P(Y=k \mid X=x)$, more machine learning). $P(X)$ is not specified. Since not assuming normality, it is "robust". Being "robust" means if the real data is indeed not normal, the method still holds; but if the data is close to normal, it loses efficiency (roughly 30%).
Also, if data is perfectly separable, it could cause issue for logistic regression, not for linear discriminant analysis.

The following are some pictorial comparisons of these two methods in 2-dimensional cases.

1. When the data is normal (and separable), Linear Discriminant Analysis is more efficient. The three lines for Logistic Regression are equally good, since the likelihood is at global maximum at all of them.

Figure 17.11: Data is normal

2. When the data is not normal, Logistic Regression is more efficient.

Figure 17.12: Data is not normal

Linear Discriminant Analysis

Logistic Regression

3. When the data is not linearly separable, two methods would both fail.

The common feature of these two methods is they both use separating hyperplane. In the next lecture, we will introduce support vector machine which uses data close to the margin of groups to find separating hyperplane.

Figure 17.13: Data is not linearly separable

ISYE 7405: Multivariate Data Analysis

Georgia Tech

> Chapter 18: Hyperplane
> Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

18.50 Separating hyperplace

Let $f(x)=\beta_{0}+\beta_{1}^{T} x$ and define $L=\{x: f(x)=0\}$. Then

- For any two points x_{1}, x_{2} on L, we have $\beta_{1}^{T}\left(x_{1}-x_{2}\right)=0$.
- If we define the unit normal vector $\beta^{*}=\frac{\beta_{1}}{\left\|\beta_{1}\right\|}$, then for any x, the signal distance of x to L satisfies

$$
d(x, L)=\left(\beta^{*}\right)^{T}\left(x-x_{0}\right)=\frac{\beta_{1}^{T}}{\left\|\beta_{1}\right\|}\left(x-x_{0}\right)=\frac{\beta_{1}^{T} x}{\left\|\beta_{1}\right\|}-\frac{\beta_{1}^{T} x_{0}}{\left\|\beta_{1}\right\|}=\frac{\beta_{0}+\beta_{1}^{T} x}{\left\|\beta_{1}\right\|},
$$

where x_{0} is an arbitary point on L. Therefore, $G(x)=\operatorname{sgn}(f(x))$ gives the classification.

18.51 Rosenblatt's Perception learning algorithm

We try to find a hyperplace by minimizing the distance of misclassified points to the boundary.
Define M as the set of misclassified points, then we aim to minimize $D\left(\beta_{0}, \beta_{1}\right)$ subject to $\left\|\beta_{1}\right\|=1$, where

$$
D\left(\beta_{0}, \beta_{1}\right)=\sum_{i \in M}\left|\beta_{0}+\beta_{1}^{T} x_{i}\right| .
$$

Moreover, if we label $y_{i} \in\{-1,1\}$, we have

$$
\begin{aligned}
D\left(\beta_{0}, \beta_{1}\right)=\sum_{i \in M}\left|\beta_{0}+\beta_{1}^{T} x_{i}\right| & =\sum_{i \in M}-y_{i}\left(\beta_{0}+\beta_{1}^{T} x_{i}\right) \\
& =\sum_{i}\left(-y_{i}\left(\beta_{0}+\beta_{1}^{T} x_{i}\right)\right)_{+} .
\end{aligned}
$$

Assuming that M is fixed, we take the derivatives and obtain

$$
\left\{\begin{array}{l}
\frac{\partial D}{\partial \beta_{1}}=-\sum_{i \in M} y_{i} x_{i} \tag{18.10}\\
\frac{\partial D}{\partial \beta_{0}}=-\sum_{i \in M} y_{i}
\end{array}\right.
$$

18.51.1 Algorithm: stochastic gradient decent

Instead of computing the sum in (18.10), the gradient decent step is taken after each observation is visited. For each i in M, we update $\left(\beta_{1}, \beta_{0}\right)^{T}$ by $\left(\beta_{1}, \beta_{0}\right)^{T}=\left(\beta_{1}, \beta_{0}\right)^{T}+\eta\left(y_{i} x_{i}, y_{i}\right)^{T}$.

Gradient decent possesses two nice properties: 1. the simple algorithm is easy to code; 2 . if the classes are separable, then the algorithm will stop in finite iterations. However, there are some issues about the algorithms. It converges very slowly and never converge in non-separable case. Also, it produces infinite solutions in separable case.

18.52 Optimal separating hyperplane

In separable case, we want to find the hyperplane that maximizes the minimal distance from either class. Recall we have proved for any x, the signal distance to the hyperplane is $\frac{\beta_{0}+\beta_{1}^{T} x}{\left\|\beta_{1}\right\|}$, then we aim to solve the following optimization problem

$$
\max _{\beta_{0}, \beta_{1}}\left\{\min _{i} \frac{y_{i}\left(\beta_{0}+\beta_{1}^{T} x\right)}{\left\|\beta_{1}\right\|}\right\},
$$

or equivalently

$$
\left.\max _{\beta_{0}, \beta_{1}} C, \text { s.t. } \frac{y_{i}\left(\beta_{0}+\beta_{1}^{T} x\right)}{\left\|\beta_{1}\right\|}\right\} \geq C, \forall i,
$$

or equivalently

$$
\max _{\beta_{0},\left\|\beta_{1}\right\|=1} C \text { s.t. } y_{i}\left(\beta_{0}+\beta_{1}^{T} x\right) \geq C, \forall i,
$$

or equivalently, take $\left\|\beta_{1}\right\|=\frac{1}{C}$,

$$
\max _{\beta_{0},\left\|\beta_{1}\right\|=1}\left\|\beta_{1}\right\|, \text { s.t. } y_{i}\left(\beta_{0}+\beta_{1}^{T} x\right) \geq 1, \forall i,
$$

We introduce the Lagrange multiplier L_{p}

$$
\begin{equation*}
L_{p}=\frac{1}{2}\left\|\beta_{1}\right\|^{2}-\sum_{i} \alpha_{i}\left(y_{i}\left(\beta_{0}+\beta_{1}^{T} x\right)-1\right) \tag{18.11}
\end{equation*}
$$

where α_{i} are non-negative coefficients. Taking derivatives with β_{0} and β_{1}, we obtain

$$
\left\{\begin{align*}
\beta_{1} & =\sum_{i} \alpha_{i} y_{i} x_{i} \tag{18.12}\\
0 & =\sum_{i} \alpha_{i} y_{i}
\end{align*}\right.
$$

Substitute (18.12) back into (18.11), we have

$$
\begin{equation*}
L_{p}=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \tag{18.13}
\end{equation*}
$$

From convex optimization with convex constraint, we also have KKT conditions

$$
\begin{equation*}
\alpha_{i}\left(y_{i}\left(\beta_{0}+\beta_{1}^{T} x_{i}-1\right)=0, \forall i,\right. \tag{18.14}
\end{equation*}
$$

which means either $\alpha_{i}=0$, or $\alpha_{i}>0, y_{i}\left(\beta_{0}+\beta_{1}^{T} x_{i}\right)=1$.
We can get optimized β_{0}, β_{1} from (18.12),(18.13),(18.14) and we can find only support vectors determine the β_{0}, β_{1}. Because (18.12) means β_{1} depends only on points with $\alpha_{i}>0$. In other word, β_{1} only depends on support points.

18.53 Comparison of Optimal Separating Hyperplane(OSH) with Linear Discriminant Analysis(LDA)

- LDA bottom up. OSH top down.
- OSH more robust to outliers.
- OSH sensitive to support vectors(support points).
- Only partially true that β_{0}, β_{1} only depends on support points("which ones are support points" depends on the entire set.)
- If data is indeed normal, LDA is more efficient.
- If data is not linearly separable, OSH will fail but LDA will still work.

Chapter 19: Convex Optimization

Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

19.54 Convex Optimization

Assume f, g, h are all convex (h must be affine as well to have a convex program).

$$
\begin{array}{rlr}
\operatorname{argmin} & f(x) & \text { (Primal Objective) } \\
\text { s.t } & g_{i}(x) \leq 0, \forall i=1,2, \ldots, n_{I} & \text { (Constraints) } \\
& h_{j}(x)=0, \forall j=1,2, \ldots, n_{E} & \\
& x \in \mathbb{R}^{p} &
\end{array}
$$

The set $\mathbb{X}=\left\{x \in \mathbb{R}^{p}: g_{i}(x) \leq 0, \forall i=1,2, \ldots, n_{I}, h_{j}(x)=0, \forall j=1,2, \ldots, n_{E}\right\}$ is called the primal feasible set. If a solution exists to the problem is denoted by x^{*} and it's called primal solution. Respectively, $p^{*}=f\left(x^{*}\right)$ is the primal optimum.

19.54.1 Lagrangian Function

We define $\forall x \in \mathbb{R}^{p}, \forall \lambda \in \mathbb{R}^{n_{I}}$ and $\nu \in \mathbb{R}^{E}$.

$$
L(x, \lambda, \nu)=f(x)+\sum_{i=1}^{n_{I}} \lambda_{i} g_{i}(x)+\sum_{j=1}^{n_{E}} \nu_{j} h_{j}(x)
$$

The Lagrange dual function for $\lambda \in \mathbb{R}_{+}^{n_{I}}$

$$
\Lambda(\lambda, \nu)=\inf _{x \in \mathbb{R}^{p}} L(x, \lambda, \nu)
$$

It holds that the dual function is always less or equal to primal optimum p^{*}. Indeed, $\forall \lambda \in \mathbb{R}_{+}^{n_{I}}, \nu \in \mathbb{R}^{E}$:

$$
\Lambda(\lambda, \nu)=\inf _{x \in \mathbb{R}^{p}} L(x, \lambda, \nu) \leq \inf _{\tilde{x} \in \mathbb{X}} L(\tilde{x}, \lambda, \nu)=\operatorname{inf_{\tilde {x}\in \mathbb {X}}(f(\tilde {x})+\sum _{i}\underbrace {\lambda _{i}g_{i}(\tilde {x})}_{\leq 0}+\sum _{j}\underbrace {\nu _{j}h_{j}(\tilde {x}))}_{=0}\leq inf_{\tilde {x}\in \mathbb {X}}(f(\tilde {x}))=p^{*}.{}^{*}.}
$$

Thus $\forall \lambda \geq 0, \Lambda(\lambda, \nu) \leq p^{*}$

19.54.2 Dual problem

$$
\begin{aligned}
\operatorname{argmax} & \Lambda(\lambda, \nu) \\
\text { s.t } & \lambda \geq 0, \nu
\end{aligned}
$$

Dual feasible set: $\mathbb{Z}=\left\{\lambda, \nu: \lambda \in \mathbb{R}_{+}^{n_{I}}, \nu \in \mathbb{R}^{n_{E}}\right\}$. Dual solution is denoted by λ^{*}, ν^{*} and the dual optimum as $d^{*} \leq p^{*}$.

19.54.3 KKT conditions

Necessary and sufficient for $p^{*}=d^{*}$. Necessary conditions:
$p^{*}=f\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}, \nu^{*}\right)=\inf _{x \in \mathbb{R}^{p}}\left(f(x)+\sum_{i} \lambda_{i}^{*} g_{i}(x)+\sum_{j} v_{j}^{*} h_{j}(x)\right) \leq f\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} g_{i}\left(x^{*}\right)+\sum_{j} v_{j}^{*} h_{j}\left(x^{*}\right) \leq f\left(x^{*}\right)$
x^{*} minimizes $L\left(x, \lambda^{*}, \nu^{*}\right)$ over all $x \in \mathbb{R}^{p}$. If L is convex differentiable, then

$$
\begin{equation*}
\nabla_{x} L\left(x^{*}, \lambda^{*}, \nu^{*}\right)=0 \Longleftrightarrow \nabla_{x} f\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla_{x} g_{i}\left(x^{*}\right)+\sum_{j} v_{J}^{*} \nabla_{x} h_{j}\left(x^{*}\right)=0 \tag{19.15}
\end{equation*}
$$

We also get

$$
\begin{equation*}
\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, \forall i=1,2, \ldots, n_{I} \Longleftrightarrow \lambda_{i}^{*}=0 \text { or } g_{i}\left(x^{*}\right)=0, \forall i=1,2, \ldots, n_{I} \tag{19.16}
\end{equation*}
$$

Finally, for $x^{*} \in \mathbb{X},\left(\lambda^{*}, \nu^{*}\right) \in \mathbb{Z}$:

$$
\begin{equation*}
g_{i}\left(x^{*}\right) \leq 0, \lambda_{i}^{*} \geq 0, h_{j}\left(x^{*}\right)=0 \tag{19.17}
\end{equation*}
$$

(19.1), (19.2), (19.3) constitute the KKT conditions.

19.54.4 Sufficient conditions

Suppose $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy (19.1), (19.2), (19.3). Then

$$
x \rightarrow L(x, \tilde{\lambda}, \tilde{\nu})
$$

has gradient zero at \tilde{x}. Now, if $x \in L(x, \tilde{\lambda}, \tilde{\nu}$ is convex then \tilde{x} must be the minimizer.

$$
g(\tilde{\lambda}, \tilde{\nu})=\inf _{x \in \mathbb{R}} L(x, \tilde{\lambda}, \tilde{\nu})=L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})=f(\tilde{x})+\sum_{i} \tilde{\lambda}_{i} g_{i}(\tilde{x})+\sum_{j} \tilde{\nu}_{j} h_{j}(\tilde{x})=f(\tilde{x})
$$

However, we also have $\forall \lambda, \nu \quad g(\lambda, \nu), \leq p^{*}=\inf _{x \in \mathbb{X}} f(x) \Rightarrow \tilde{\lambda}, \tilde{\nu}, \tilde{x}$ makes equality hold $\Rightarrow \tilde{x}$ is minimizer for $\inf _{x \in \mathbb{X}} f(x)$ and $\tilde{\lambda}, \tilde{\nu}$ minimize $g(\lambda, \nu)$.

19.55 Classification

Classes:

$$
Y_{1}, \ldots, Y_{N} \in\{-1,1\}
$$

Features:

$$
X_{1}, \ldots, X_{N}
$$

Discriminant function $f(x)$ and choosen class $G(x)=\operatorname{sgn}\{f(x)\}$.

19.55.1 Model based

Linear Discriminant Analysis. Full likelihood (X, Y)

$$
\begin{gathered}
P(Y=k)=\pi_{k}, \quad P(X \mid Y=k) \sim \mathcal{N}\left(\mu_{k}, \Sigma\right) \\
f(x)=\beta^{\top} x+\beta_{0}=\left(\hat{\Sigma}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)\right)^{\top}\left(x-\frac{\hat{\mu}_{2}-\hat{\mu}_{1}}{2}\right)
\end{gathered}
$$

Logistic Regression:

$$
P(Y \mid X)=\frac{\exp (f(x))}{1+\exp (f(x))}, \quad f(x)=\beta^{\top} x+\beta_{0}
$$

19.55.2 Separating Hyperplanes

minimize misclassification.

- Optimal SH. problem: Fails when data not linearly separable.
- Support vector classification

Idea for Support vector classification: introduce slack variables:

$$
\xi_{1}, \xi_{2}, \ldots, \xi_{N} \quad \text { s.t } \quad \xi_{i} \geq 0, \quad \sum_{i} \xi_{i} \leq \text { Constant }
$$

Optimize margin but with slack:

$$
y_{i}\left(\beta_{0}+\beta_{1}^{\top} x_{i}\right) \geq C\left(1-\xi_{i}\right) \quad \forall i
$$

$(\xi=0)$ outside margin, $\left(0<\xi_{i}<1\right)$ inside margin, $(\xi>1)$ wrong classification. Problem:

$$
\begin{aligned}
\max & C \\
\text { s.t } & \beta_{0},\left\|\beta_{1}\right\|=1
\end{aligned}
$$

Let $\tilde{\beta}=\frac{\beta}{c}, \beta_{0}=\frac{\beta_{0}}{c},\|\tilde{\beta}\|=\frac{1}{c}$. The dual of the above problem is:

$$
\begin{aligned}
\min & \frac{1}{2}\left\|\beta_{1}\right\|^{2}+r \sum_{i} \xi_{i} \\
\text { s.t } & y_{i}\left(\beta_{0}+\beta_{1}^{\top} \xi_{i}\right) \geq 1-\xi_{i}, \xi \geq 0
\end{aligned}
$$

Using KKT conditions: $L_{p}=\frac{1}{2}\left\|\beta_{1}\right\|^{2}+r \sum_{i} \xi_{i}+\alpha_{i}\left[\left(1-\xi_{i}\right)-y_{i}\left(\xi_{i}^{\top} \beta_{1}+\beta_{0}\right)\right]-\sum_{i} \xi_{i} \mu_{i}$.

$$
\begin{gathered}
0=\frac{\partial L_{p}}{\partial \beta_{1}}=\beta_{1}-\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \\
0=\frac{\partial L_{p}}{\partial \beta_{0}}=\sum \alpha_{i} y_{i} \\
0=\frac{\partial L_{p}}{\partial \xi_{i}}=r-\mu_{i}-\alpha_{i} \Rightarrow \alpha_{i}=r-\mu_{i} \Rightarrow \alpha_{i} \in[0, r]
\end{gathered}
$$

Substituting back, the dual objective function becomes:

$$
L_{D}=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
$$

The problem becomes:

$$
\begin{aligned}
\max & L_{D} \\
\text { s.t } & 0 \leq \alpha_{i} \leq r, \quad \sum \alpha_{i} y_{i}=0
\end{aligned}
$$

The rest of the KKT:

$$
\left\{\begin{array}{l}
\alpha_{i}\left[y_{i}\left(x_{i}^{\top} \beta_{1}+\beta_{0}\right)-\left(1-\xi_{i}\right)\right]=0 \\
\mu_{i} \xi_{i}=0
\end{array}\right.
$$

$y_{i}\left(x_{i}^{\top} \beta_{1}+\beta_{0}\right)-\left(1-\xi_{i}\right) \geq 0, \xi_{i} \geq 0 . \beta_{1}=\sum_{i} \alpha_{i} y_{i} x_{i} . \beta_{1}$ depends only on i for which $\alpha_{i} \neq 0$. For support vectors $\alpha_{i} \neq 0 \Rightarrow y_{i}\left(x_{i}^{\top} \beta_{1}+\beta_{0}\right)-\left(1-\xi_{i}\right)=0$.

For $\alpha_{i} \neq 0$:

$$
\left\{\begin{array}{l}
\xi_{i}=0 \quad \text { on the edge } \\
0<\xi_{i}<1 \text { in the margin } \\
\xi_{i}>1 \quad \text { misclassified }
\end{array}\right.
$$

For those $\alpha_{i}=0$, "inner points" no effect on β.

Chapter 20: Support Vector Machine
 Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

20.56 Support Vector Machine

Enlarge feature x_{i} using basis expansions (e.g. $x_{i}, x_{i}^{2}, x_{i}^{3}$):

$$
h\left(x_{i}\right)=\left(h_{1}\left(x_{i}\right), h_{2}\left(x_{i}\right), \ldots h_{m}\left(x_{i}\right)\right)
$$

Fit Support Vector linear classifier on $h_{i}(x)$ with discriminant function

$$
f(x)=\beta^{\top} h(x)+\beta_{0}
$$

and decision

$$
G(x)=\operatorname{sign}(f(x))
$$

Lagrangian dual with the enlarged basis function:

$$
\begin{aligned}
L_{0} & =\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} h\left(x_{i}\right)^{\top} h\left(x_{j}\right) \\
& =\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \underline{\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle} \\
\beta & =\sum_{i=1}^{N} \alpha_{i} y_{i} h\left(x_{i}\right) \\
f(x) & =\beta^{\top} h(x)+\beta_{0} \\
& =\sum_{i=1}^{N} \alpha_{i} y_{i} h\left(x_{i}\right)^{\top} h(x)+\text { beta } \\
& =\sum_{i=1}^{N} \alpha_{i} y_{i} \underline{\left\langle h\left(x_{i}\right), h(x)\right\rangle}+\beta_{0}
\end{aligned}
$$

KKT conditions:

$$
\begin{aligned}
\alpha_{i}\left(y_{i} f\left(x_{i}\right)-\left(1-\xi_{i}\right)\right) & =0 \\
y_{i} f\left(x_{i}\right)-\left(1-\xi_{i}\right) & \geq 0
\end{aligned}
$$

Observation: h is related to prediction and optimization only through $\left\langle h\left(x_{i}\right), h\left(x_{j}\right)\right\rangle$ so we do not need to specify $h(x)$ at all. It is sufficient to specify $\left\langle h(x), h\left(x^{\prime}\right)\right\rangle$ for all x, x^{\prime}.

Kernel function:

$$
K\left(x, x^{\prime}\right):=\left\langle h(x), h\left(x^{\prime}\right)\right\rangle .
$$

As long as I know $K\left(x, x^{\prime}\right)$, I don't need to know h.
$K\left(x, x^{\prime}\right)$ is symmetric:

$$
K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right) ;
$$

and positive definite

$$
\forall n, \forall x_{1}, \ldots, x_{n}, K\left(\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\right)=\left(\left(\begin{array}{cccc}
K\left(x_{1}, x_{1}\right) & K\left(x_{1}, x_{2}\right) & \cdots & K\left(x_{1}, x_{n}\right) \\
K\left(x_{2}, x_{1}\right) & K\left(x_{2}, x_{2}\right) & \cdots & K\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
K\left(x_{n}, x_{1}\right) & K\left(x_{n}, x_{2}\right) & \cdots & K\left(x_{n}, x_{n}\right)
\end{array}\right)\right)
$$

is positive definite matrix.

$$
\begin{aligned}
f(x) & =\sum_{i=1}^{N} \alpha_{i} y_{i} K\left(x_{i}, x\right)+\beta_{0} \\
L_{0} & =\sum_{i=1}^{N} \alpha_{i}-\sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right)
\end{aligned}
$$

With a kernel function, the support vector classifier is referred to as support vector machine.
Some choices of the kernel $K\left(x_{i}, x_{j}\right)$

1. d-th polynomial: $K\left(x, x^{\prime}\right)=\left(1+\left\langle x, x^{\prime}\right\rangle\right)^{d}$
2. Gaussian radial kernel: $K\left(x, x^{\prime}\right)=\exp \left\{-\frac{\left\|x-x^{\prime}\right\|^{2}}{c}\right\}$
3. Neural network: $K\left(x, x^{\prime}\right)=\tanh \left(K_{1}\left(x, x^{\prime}\right)+K_{2}\right) \quad\left(\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)$

20.56.1 Tuning parameter r

large $r \Rightarrow$ fewer possible $\xi \Rightarrow$ less mis-classification \Rightarrow boundary more "wiggly"

small $r \Rightarrow\|\beta\|^{2}$ small, $\sum \xi_{i}$ to be large \Rightarrow more positive $\xi \Rightarrow$ more tolerant on mis-classification \Rightarrow boundary will be smooth

Cross-validation to tune r.

20.56.2 Loss function

SVM:

$$
\begin{aligned}
\min & D(\beta)=\frac{1}{2}\|\beta\|^{2}+r \sum_{i=1}^{N} \xi_{i} \\
\text { s.t. } & \xi_{i} \geq 0 \\
& y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right) \geq 1-\xi_{i} \\
\Leftrightarrow \min & \sum_{i=1}^{N}\left(1-y_{i}\left(f\left(x_{i}\right)\right)\right)_{+}+\lambda\|\beta\|^{2} \quad \lambda=\frac{1}{2 r} \\
& L(y, f)=\left(1-y_{i} f\right)_{+}
\end{aligned}
$$

where

$$
f=\beta x+\beta_{0}
$$

if linear.
LDA: $L(y, f)=(Y-f)^{2}=(1-Y f)^{2}$. Linear regression as if $y \in\{-1,1\}$ are continuous response variable.

Hint: $Y=(-1,+1,-1,+1)^{\top}, X=\left(x_{1}, \ldots, x_{n}\right), \bar{X}=0$, and n_{1}, n_{2} with $n_{1}+n_{2}=N, n_{1}=n_{2}$.

$$
\begin{aligned}
\left(\hat{\beta}_{0}, \hat{\beta}\right) & =\left(\tilde{X}^{\tilde{X}^{\top}}\right)^{-1} \tilde{X} Y, \quad \tilde{X}=\binom{\mathbf{1}_{n}^{\top}}{X} \\
\tilde{X} \tilde{X}^{\top} & =\left(\begin{array}{cc}
n & 0 \\
0 & n \hat{\Sigma}
\end{array}\right) \quad \hat{\Sigma}=\frac{X X^{\top}}{n} \\
\tilde{X} Y & =\binom{n_{1}-n_{2}}{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}} \\
\left(\hat{\beta}_{0}, \hat{\beta}\right) & =\left(0, \frac{1}{n} \hat{\Sigma}^{-1}\left(\bar{X}_{1}-\bar{X}_{2}\right)\right) \\
f(x) & =\hat{\Sigma}^{-1}\left(\hat{\mu}_{2}-\hat{\mu}_{1}\right)\left(x-\frac{\hat{\mu}_{2}+\hat{\mu}_{1}}{2}\right)
\end{aligned}
$$

which is the same as LDA.
Logistic regression:

$$
\begin{gathered}
P(Y=1 \mid X)=\frac{e^{f}}{1+e^{f}}=\frac{1}{e^{-f}+1} \\
P(Y=-1 \mid X)=\frac{1}{1+e^{f}} \\
\Rightarrow P(Y \mid X)=\frac{1}{1+e^{-Y f}} \\
\text { minimize }:-\log P(Y \mid X)=-\log \frac{1}{1+e^{-Y f}}=L(y, f)
\end{gathered}
$$

Support vector classifier, LDA, logistic regression are all linear classifier trained with different loss function.

20.56.3 Kernel and linear classifier

$$
\begin{aligned}
& \begin{array}{c}
\text { Support Vector Classifier } \\
L(y, f)=(1-y f)_{+}
\end{array} \xrightarrow[\text { kernel }]{\text { non-linear }} \text { Support Vector Machine } \\
& \text { Linear Discriminant Analysis } \\
& L(y, f)=(y-f)^{2}=(1-y f)^{2} \\
& \text { Logistic Regression } \\
& L(y, f)=\log \left(1+e^{-y f}\right) \\
& \xrightarrow[\text { kernel }]{\text { non-linear }} \text { Gaussian Process Classification } \\
& \xrightarrow[\text { kernel }]{\text { non-linear }} \text { ? } \\
& \text { Linear Regression } \\
& (y-f)^{2} \quad \longrightarrow \quad \text { Gaussian Process Classification }
\end{aligned}
$$

20.57 Clustering Analysis

(X_{i}, Y_{i}) - classification. $Y_{i}= \pm 1$ have it at least for training data.
$\left(X_{i}\right)_{i=1}^{n}$ - clustering. $X_{i}: p$ dimensions.
Goal: given n observations which are believed to be heterogenous. Want to group them into K homogenous subpopulations, where K is also unknown.

Distances and dissimulating measures - $X, X^{\prime}, d\left(X, X^{\prime}\right)$: real valued
d is said to be a dissimulating measures if

1. symmetry: $d\left(X, X^{\prime}\right)=d\left(X^{\prime}, X\right)$
2. non-negativity: $d\left(X, X^{\prime}\right) \geq 0$
3. identification: $d(X, X)=0$

ISYE 7405: Multivariate Data Analysis

Georgia Tech

Chapter 21: Distance \& Clustering algorithms

Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

21.58 Distance \& dissimulating measures

$x, x^{\prime} \quad d\left(x, x^{\prime}\right)$: real valued. d is said to be a dissimulating measure if:
(1) symmetry: $d\left(x, x^{\prime}\right)=d\left(x^{\prime}, x\right)$
(2) non-negativity: $d\left(x, x^{\prime}\right) \geq 0$
(3) identification: $d(x, x)=0$

If furthermore, d satisfies
(4) definiteness: $d\left(x, x^{\prime}\right)=0$ iff $x=x^{\prime}$
(5) triangular inequality: $d\left(x, x^{\prime}\right) \leq d(x, y)+d\left(y, x^{\prime}\right)$. Then d is called a distance metric.

21.58.1 Quantitative variables

$\left(x_{i}\right)_{j} \in R, x_{i} \in R^{p}$

- Euclidean distance: $d\left(x, x^{\prime}\right)=\left\|x-x^{\prime}\right\|$
e.g. L_{2} distance: $d\left(x, x^{\prime}\right)=\sqrt{\sum_{j=1}^{p}\left(x_{j}-x_{j}^{\prime}\right)^{2}}$
L_{1} distance: $d\left(x, x^{\prime}\right)=\sum_{j=1}^{p}\left|x_{j}-x_{j}^{\prime}\right|$
- Pearson distance: $d^{2}\left(x, x^{\prime}\right)=\sum_{j=1}^{p} \frac{\left(x_{j}-x_{j}^{\prime}\right)^{2}}{s_{j}^{2}}$
s_{j}^{2} : the variance of $j_{t} h$ feature
s_{j} can be replaced by some robust measure of "spread"
e.g. $s_{j}=$ interquantile range
- Mahalanobis distance: $d^{2}\left(x, x^{\prime}\right)=\left(x-x^{\prime}\right) \hat{\Sigma}^{-1}\left(x-x^{\prime}\right)$
$\hat{\sum}=I \rightarrow L_{2}$ distance
$\hat{\sum}=\operatorname{diag} \rightarrow$ Pearson distance
"How to estimate precision matrix \sum^{-1} (sparse)"

21.58.2 Ordinal variables

e.g. rank of preference
often coded by contiguous integers. such as $1,2, \ldots, M$
often treated by replacing i by $\frac{i-\frac{1}{2}}{M} \&$ pretend as if they are quantitative in nature

21.58.3 Categorical variables

"look up" table dissimulating matrix

21.59 Clustering algorithms

- Model based

Assume x_{i} are independent, each comes from any one of g possible sub-populations with density function $f\left(x_{i}, \theta_{k}\right), k=1,2, \ldots, g$.
likelihood: Let $\gamma=\left(\begin{array}{c}\gamma_{1} \\ \vdots \\ \gamma_{n}\end{array}\right)$ to be assignment of $x_{i} . \gamma_{i} \in\{1,2, \ldots, g\}$. One way is to view γ as parameters.

$$
\begin{aligned}
C_{k} & =\left\{i: \gamma_{i}=k\right\} \\
L\left(\gamma, \theta_{1}, \ldots, \theta_{k}\right) & =\prod_{k=1}^{g} \prod_{i \in C_{k}} f\left(x_{i}, \theta_{k}\right)
\end{aligned}
$$

The MLE:

$$
\left(\hat{\gamma}, \hat{\theta_{1}}, \ldots, \hat{\theta_{k}}\right)=\underset{\gamma, \theta_{1}, \ldots, \theta_{k}}{\arg \max } L
$$

Issue:
(1) combinetorial optimization
(2) treating γ as parameters is arguable

Better approach: view γ as missing data
special case: treat $f\left(x, \theta_{k}\right) \stackrel{i . i . d}{\sim} \mathcal{N}\left(\mu_{k}, \Sigma_{k}\right)$ complete data likelihood:

$$
\begin{aligned}
L\left(\theta_{1}, \ldots, \theta_{k} ; x, \gamma\right) & =L\left(\mu_{1}, \ldots, \mu_{g}, \Sigma_{1}, \ldots, \Sigma_{g}, \tau_{1}, \ldots, \tau_{g}\right) \\
& \left.=\prod_{i=1}^{g} \sum_{k=1}^{g} 1_{\left\{\gamma_{i}=k\right\}} \tau_{k} \phi\left(x_{i} ; \mu_{k}, \Sigma_{k}\right)\right)
\end{aligned}
$$

log_ likelihood:

$$
\log L=\sum_{i=1}^{n} \sum_{k=1}^{g} 1_{\left\{\gamma_{i}=k\right\}}\left(\log \tau_{k}+\log \phi\left(x_{i} ; \mu_{k}, \Sigma_{k}\right)\right)
$$

21.59.1 Expectation-Maximization Algorithm

E-step:

$$
\begin{aligned}
& Q\left(\theta \mid \theta^{(t)}\right)= E_{\gamma \mid x, \theta^{(t)}}(\log L(\theta ; x, \gamma)) \\
&= E_{\gamma \mid x, \theta^{(t)}}\left(\sum_{i=1}^{n} \sum_{k=1}^{g} 1_{\left\{\gamma_{i}=k\right\}}\left(\log \tau_{k}+\log \phi\left(x_{i} ; \mu_{k}, \Sigma_{k}\right)\right)\right) \\
&= \sum_{i=1}^{n} \sum_{k=1}^{g}\left(E_{\gamma \mid x, \theta^{(t)}}\left(1_{\left\{\gamma_{i}=k\right\}}\right)\right)\left(\log \tau_{k}+\log \phi\left(x_{i} ; \mu_{k}, \Sigma_{k}\right)\right) \\
&=\sum_{i=1}^{n} \sum_{k=1}^{g}\left(T_{i k}^{(k)}\right)\left(\log \tau_{k}+\log \phi\left(x_{i} ; \mu_{k}, \Sigma_{k}\right)\right) \\
& T_{i k}^{(t)}=P\left(\gamma_{i}=k \mid x_{i}=x_{i}, \theta^{(t)}\right) \\
&=\frac{\tau_{k}^{(t)} \phi\left(x_{i} ; \mu_{k}^{(t)}, \Sigma_{k}^{(t)}\right)}{\sum_{j=1}^{g} \tau_{j}^{(t)} \phi\left(x_{i} ; \mu_{j}^{(t)}, \Sigma_{j}^{(t)}\right)}
\end{aligned}
$$

M-step: maximizing

$$
\begin{gathered}
\theta^{(t+1)}=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(t)}\right) \\
\underset{\tau_{k}, \mu_{k}, \Sigma_{k}}{\arg \max } \sum_{i=1}^{n} \sum_{k=1}^{g} T_{i k}^{(k)}\left(\log \tau_{k}+\log \phi\left(x_{i} ; \mu_{k}, \Sigma_{k}\right)\right)
\end{gathered}
$$

where

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{k=1}^{g} T_{i k}^{(k)}\left(\log \tau_{k}+\log \phi\left(x_{i} ; \mu_{k}, \Sigma_{k}\right)\right) & =\sum_{i} \sum_{k} T_{i k}^{(k)} \log \tau_{k}+\sum_{i} \sum_{k} T_{i k}^{(k)}\left(-\frac{1}{2}\left[\left(x_{i}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{i}-\mu_{k}\right)+\operatorname{det}\left(\Sigma_{k}\right)\right]\right) \\
\tau_{k}^{(t+1)} & =\frac{\sum_{i=1}^{n} T_{i k}^{(t)}}{\sum_{j=1}^{g} \sum_{i=1}^{n} T_{i j}^{(t)}}=\frac{1}{n} \sum_{i=1}^{n} T_{i k}^{(t)} \\
\mu_{k}^{(t+1)} & =\frac{\sum_{i=1}^{n} T_{i k}^{(t)} x_{i}}{\sum_{i=1}^{n} T_{i k}^{(t)}} \\
\Sigma_{k} & =\frac{\left.\sum_{i=1}^{n} T_{i k}^{(t)}\left(x_{i}-\mu_{k}\right)^{(t+1)}\right)\left(x_{i}-\mu_{k}^{(t+1)}\right)^{T}}{\sum_{i=1}^{n} T_{i k}^{(t)}}
\end{aligned}
$$

local maximizer

21.59.2 Combinatorial Algorithm

Seek the cluster assignment that minimizes some loss function based on dissimulating measures.
A natural choice of loss function

$$
\begin{gathered}
W(\gamma)=\frac{1}{2} \sum_{k=1}^{g} \sum_{i, j, \gamma(i)=\gamma(j)=k} d\left(x_{i}, x_{j}\right), \quad \gamma \rightarrow \text { assignment } \\
\text { total within-class distance }
\end{gathered}
$$

Equivalent description:

$$
B(\gamma)=\frac{1}{2} \sum_{k=1}^{g} \sum_{i, j, \gamma(i)=\gamma(j) \neq k} d\left(x_{i}, x_{j}\right)
$$

total between-class distance

21.59.3 K-means Algorithm

K-means algorithm assumes all variables are quantitative and use Euclidean L_{2} distance ${ }^{2}$ as dissimulating metric.

$$
\begin{aligned}
W(\gamma) & =\frac{1}{2} \sum_{k=1}^{g} \sum_{i, j, \gamma(i)=\gamma(j)=k}\left\|x_{i}-x_{j}\right\|^{2} \\
& =\frac{1}{2} \sum_{k=1}^{g} n_{k} \sum_{i, \gamma(i)=k}\left\|x_{i}-\bar{x}_{k}\right\|^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \bar{x}_{k}=\text { mean vector from the k-th cluster } \\
& n_{k}=\text { cluster size of the k-th cluster }
\end{aligned}
$$

An iterative desent algorithm: minimizing the following within-class distance

$$
\min _{\gamma, m} \sum_{k=1}^{g} n_{k} \sum_{\gamma(i)=k}\left\|x_{i}-m_{k}\right\|^{2}
$$

t

Chapter 23: Factor Analysis
 Lecturer: Shihao Yang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

23.60 Factor Analysis

A mathematical model that attempts to explain the correlation between a large set of variables in terms of a small number of underlying factors (assuming that the underlying factors are not observed).
The factor model:

$\Lambda_{p \times k}$: factor loading matrix, constant across observations.
u : random vector, unique factor (specific).
Assumptions:

$$
\begin{aligned}
& \mathrm{E}(f)=0, \quad \mathrm{E}(u)=0 \\
& \operatorname{Cov}(f)=I, \operatorname{Cov}(u)=\operatorname{diag}\left(\psi_{1}, \ldots, \psi_{p}\right)=\psi \\
& \operatorname{Cov}(f, u)=0 \\
\Longrightarrow & \mathrm{E}(Y)=\mu_{p}, \operatorname{Cov}(Y)=\Lambda \Lambda^{T}+\psi \triangleq \Sigma
\end{aligned}
$$

23.60.1 Factor models are scale-invariant

$$
\text { suppose } \begin{aligned}
Z & =C \cdot Y, \quad C=\operatorname{diag}\left(c_{1}, \ldots, c_{p}\right) \\
& =(C \Lambda) f+C u+C \mu
\end{aligned}
$$

23.60.2 Issue: Rotation Invariant

$$
\begin{array}{r}
Y=(\Lambda \Gamma)\left(\Gamma^{T} f\right)+u+\mu, \Gamma: \text { orthogonal matrix } \\
f^{\prime}=\Gamma^{T} f, \Lambda^{\prime}=\Lambda f, Y=\Lambda^{\prime} f^{\prime}+u+\mu
\end{array}
$$

We need further constraints to make model identifiable.
Common constraints:
(1) $\Lambda^{T} \psi^{-1} \Lambda$ is diagonal, otherwise (if not diagonal) we do spectral decomposition on $\Lambda^{T} \psi^{-1} \Lambda=\Gamma \Lambda^{*} \Gamma^{T}$, then we take this Γ. Let $\tilde{\Lambda} \triangleq \Lambda \Gamma$, then $\tilde{\Lambda}^{T} \psi^{-1} \tilde{\Lambda}$ is to be diagonal.
or (2) $\Lambda^{T} D^{-1} \Lambda$ is diagonal, where $D=\operatorname{diag}(\Sigma)=\operatorname{diag}\left(\sigma_{11}, \sigma_{22}, \ldots, \sigma_{p p}\right)$; If data is standardized, i.e., $\operatorname{diag}(\Sigma)=(1,1, \ldots, 1),(2)$ then will be constraint: $\Lambda^{T} \Lambda=$ diagonal.

23.60.3 Count \# of Free Parameters

$$
\begin{aligned}
& \Sigma: \frac{1}{2} p(p+1) \text { for free } \\
& \Lambda \& \psi: p k+p \text { for free }
\end{aligned}
$$

Constraint (1) or (2) requires a $k \times k$ matrix $\left(\left(\Lambda^{T} \psi^{-1} \Lambda\right)_{k \times k},\left(\Lambda^{T} D^{-1} \Lambda\right)_{k \times k}\right)$ to be diagonal.

$$
\begin{aligned}
& \frac{1}{2} k(k-1) \text { constraints } \\
\text { Total freedom }: & \frac{1}{2} p(p+1)-\left[p k+p-\frac{1}{2} k(k-1)\right] \\
= & \frac{1}{2}(p-k)^{2}-\frac{1}{2}(p+k)
\end{aligned}
$$

No guarantee this is >0. For the usual usecase, $k \ll p$, then the model is "fine".

23.60.3.1 Example

$p=3, k=1$, degree of freedom $=0$, the solution is unique.
$\psi \geq 0$, otherwise cannot be covariance matrix.

23.60.4 How to estimate

$$
\hat{\mu}=\bar{Y}
$$

"MLE" by assuming

$$
Y \sim \mathcal{N}(\mu, \Sigma)
$$

where

$$
\Sigma=\Lambda \Lambda^{T}+\psi
$$

subject to constraints

$$
\begin{gathered}
\Lambda^{T} \psi^{-1} \Lambda=\operatorname{diag} \\
\text { or } \Lambda^{T} D^{-1} \Lambda=\operatorname{diag} \\
f_{Y}(y)=\frac{1}{(\sqrt{2 \pi})^{p} \operatorname{det}\left(\Lambda \Lambda^{T}+\psi\right)^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(y-\mu)\left(\Lambda \Lambda^{T}+\psi\right)^{-1}(y-\mu)\right) \\
\ell\left(\Lambda, \psi ; y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n} \log _{Y}\left(y_{i}\right) \\
\hat{\Lambda}, \hat{\psi}=\underset{\Lambda, \psi}{\arg \max } \ell(\Lambda, \psi)
\end{gathered}
$$

Let $\hat{\Sigma}$ be sample variance-covariance matrix. $\hat{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(y_{i}-\bar{y}\right)^{T}$.
We know $\hat{\Sigma}$ is MLE without $\Sigma=\Lambda \Lambda^{T}+\psi$ constraints.

$$
\max _{\Lambda} \ell(\Lambda, \psi) \Leftrightarrow \min _{\Lambda} \operatorname{loss}(\hat{\Sigma}, \Lambda)
$$

where loss function is sum of square of all off-diagonal elements.

$$
\Leftrightarrow \min _{\Lambda} \sum_{i<j}\left(\hat{\Sigma}-\Lambda \Lambda^{T}\right)_{i j}^{2}
$$

If not normal, this estimate can be thought as Method of Moments estimation. Or, can be thought as quasi-MLE if Gaussian is mis-specified.
"MLE "(or quasi-MLE) helps for hypothesis testing to decide k.

$$
\text { Generalized likelihood testing: }-2 \log L R \sim \chi_{d f_{1}-d f_{2}}^{2}
$$

In the special case where data are standardized, $\operatorname{diag}(\hat{\Sigma})=(1,1, \ldots, 1)$

- then $\Lambda \Lambda^{T}$ is also the model correlation matrix (on off-diag elements).
- and $\operatorname{diag}\left(\Lambda \Lambda^{T}\right)$ is the proportion of variance explained by factors.

Comparison:	F A	PCA
(1)	model based	model free
(2)	degree of freedom when choosing k	choose as many as you like
(3)	uniqueness(rotation)	no such issue
(4)	don't interpret the factor,	interpretation: direction with
	but can be used for comparison, prediction. $\min _{\Lambda} \sum_{i<j}\left(\hat{\Sigma}-\Lambda \Lambda^{T}\right)_{i j}^{2}$	max variability across data. $\min \sum_{i, j}\left(\hat{\Sigma}-\Gamma(k) \Lambda(k) \Gamma(k)^{T}\right)_{i j}^{2}$
(5)	minimize off-diag difference $\Sigma=\Lambda \Lambda^{T}+\psi$ model for correlation	for the first k principal components. all elements difference $\Sigma=\Gamma(k) \Lambda(k) \Gamma(k)^{T}$ model for entire variance covariance

23.61 Independent Component Analysis (ICA) [Signal Processing]

Model $Y=\Lambda f+u+\mu$
Assumption: f and u are independent.

1. $f_{i} \amalg f_{j}, f_{i} \amalg u_{j}, u_{i} \amalg u_{j}$
2. f_{i} 's are non-Gaussian.

ISYE 7405: Multivariate Data Analysis
Georgia Tech
Chapter 24: Independent Component Analysis \& Gaussian Process
Lecturer: Shihao Yang
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

24.62 Independent Component Analysis (ICA). [signal processing]

- Model

$$
Y_{P}=\Lambda_{p \times k} f_{k}+u+\mu
$$

- Assumption
f and u are independent.
- $f_{i} \perp f_{j} . f_{i} \perp u_{j} . u_{i} \perp u_{j}$
- f_{i} 's are non-Gaussian
- Simple case

Cocktail Party Problem: k person in the room with P microphone

$$
Y=\Lambda f, p=k
$$

$g:$ joint distribution of $f . g_{i}$: distribution of f_{i} under in dependence:

$$
g(f)=\prod_{i=1}^{k} g_{i}\left(f_{i}\right)
$$

Use $K L$ divergence to measure distance between g and $\prod_{i=1}^{k} g_{i}\left(f_{i}\right)$

$$
K L(g, h)=-E g\left(\log \frac{h}{g}\right)
$$

Then

$$
\begin{aligned}
K L\left(g, \prod_{i=1}^{k} g_{i}\right) & =-\int\left(\sum_{i=1}^{k} \log g_{i}\left(f_{i}\right)-\log g(\underset{\sim}{f})\right) g(\underset{\sim}{f}) d \underset{\sim}{f} \\
& =\sum_{i=1}^{k} \int-\log g_{i}\left(f_{i}\right) g\left(f_{i}\right) d f_{i}-\int-\log g(\underset{\sim}{f}) g(\underset{\sim}{f}) d \underset{\sim}{f} \\
& =\sum_{i=1}^{k} \operatorname{Entropy}\left(g_{i}\right)-\operatorname{Entropy}(g)
\end{aligned}
$$

Since $P=K$

$$
Y=\Lambda f . f=\Lambda^{-1} Y
$$

Entropy is in variant under linear transformation. So,

$$
\begin{align*}
& \text { Entropy }(g)=\operatorname{Entropy}(Y) \text { and is observed. } \\
& \min K L\left(g, \prod_{i=1}^{k} g_{i}\right) \Leftrightarrow \min \sum_{i} \operatorname{Entropy}\left(f_{i}\right) \tag{}
\end{align*}
$$

Given mean and variance, Gaussian maximizes the entropy.
$\left(^{*}\right) \Leftrightarrow$ Given mean and variance, we are moving away from Gaussian.

24.63 Gaussian Process

- Linear Regression
- Ridge Regression
- Bayesian Linear Regression
- Gaussian Process Regression

24.63.1 Linear Regression

- Response

$$
Y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

- Predictor (Feature Matrix)

$$
X_{n \times p}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

where $x_{1} \cdots x_{n}$ are row vectors of length p (p features)

- Model

$$
\begin{gathered}
Y=X \beta+\varepsilon \\
\varepsilon \sim\left(0, \sigma^{2}\right) \text { doesn't have to be Gaussian }
\end{gathered}
$$

- Training (Estimation of β)

Minimize loss function in MSE (mean square error)

$$
L_{M S E}(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i} \beta\right)^{2}=\frac{1}{n}(Y-X \beta)^{T}(Y-X \beta)
$$

In the case where $\varepsilon \sim N\left(0, \sigma^{2}\right)$, the log likelihood can be loss function

$$
\log \text { like }(\beta)=\sum_{i=1}^{n}\left[-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \frac{\left(y_{i}-x_{i} \beta\right)^{2}}{\sigma^{2}}\right]
$$

which is closely related to $L_{M S E}$
Then,

$$
\underset{\beta}{\arg \min } L_{M S E}(\beta) \Leftrightarrow \underset{\beta}{\arg \max } \operatorname{loglike}(\beta)
$$

Check:

$$
\begin{gathered}
O=\frac{\partial L_{M S E}}{\partial \beta}=\frac{2}{n}\left(-X^{T}\right)(Y-X \beta) \Rightarrow \hat{\beta}^{O L S}=\left(X^{T} X\right)^{-1} X^{T} Y \\
\hat{Y}=X \hat{\beta}=X\left(X^{T} X\right)^{-1} X^{T} Y
\end{gathered}
$$

\hat{Y} is the projection of Y into $\mathcal{L}_{\text {col }}(X)$

- Questions

What if $X^{T} X$ is (nearly) singular?
Undesirable: small change in X or $Y \Rightarrow$ big change in $\hat{\beta}$ and \hat{Y}

24.63.2 Ridge Regression

- Idea: Add constant on diag $\left(X^{T} X\right)$

$$
\begin{gathered}
\hat{\beta}^{r i d g e}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} Y \\
\hat{Y}^{\text {ridge }}=X \hat{\beta}^{r i d g e}=X\left(X^{T} X+\lambda I\right)^{-1} X^{T} Y
\end{gathered}
$$

where λ is tuning parameter

- Bias -Variance trade-off (HW4)
$\hat{\beta}^{\text {ridge }}$ is biasing towards 0 , but has less variance.

$$
\mathrm{MSE}=\mathrm{bias}^{2}+\text { variance }
$$

$\hat{\beta}^{\text {ridge }}$ can have smaller MSE to the true β^{*} for some λ in the sweetspot

- Choice of λ : cross-validation
- Connection to noise-injected data

What if feature data has nolse injected ?(noise in X)

- data contamination
- survey data inaccuracy
- privacy (researcher add noise intentionally)

Define,

$$
\begin{gathered}
\hat{\beta} O L S=\left(\tilde{X}^{T} \tilde{X}\right)^{-1} \tilde{X}^{T} Y \\
=\left(\frac{1}{n}(X+Z)^{T}(X+Z)\right)^{-1} \frac{1}{n}(X+Z)^{T} Y=\left(\frac{1}{n} X^{T} X+\frac{1}{n} Z^{T} Z+\frac{1}{n} X^{T} Z+\frac{1}{n} Z^{T} X\right)^{-1}\left(\frac{1}{n} X^{T} Y+\frac{1}{n} Z^{T} Y\right) \\
\approx\left(\frac{1}{n} X^{T} X+\sigma_{Z}^{2} I\right)\left(\frac{1}{n} X^{T} Y\right)=\left(X^{T} X+n \sigma_{Z}^{2} I\right)\left(X^{T} Y\right)
\end{gathered}
$$

In real-world big data, X almost always have noise \Rightarrow implicit ridge penalty is applied.
Many ML tricks involving noise injection in training (stochastic GD dropout layer) which the model robust can be though of as implicit regularization.

ISYE 7405: Multivariate Data Analysis	Georgia Tech
Chapter 26: LASSO Regression	
Lecturer: Shihao Yang	

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

26.64 (From previous lecture) Summary of Gaussian Process

Gaussian Process is appealing because it:

1. Quantify uncertainty, which includes

- Intrinsic noise
- Errors in parameter estimation

2. Non-parametric regression: can model any arbitrary functions
3. Introduce kernels into regression:

- GP $=$ Ridge Regression + kernel base

4. Simple and straightforward linear algebra implementations.

Downside: computational complexity (for K^{-1})

26.65 LASSO (Least Absolute Shrinkage and Selection Operator)

26.65.1 Key Feature

LASSO scales well with number of parameters p :

- statistical error
- computational cost

26.65.2 Setup

- Feature matrix: X is standardized so that column mean is 0 and variance is 1 , i.e., $\sum_{i=1}^{n} X_{i j}=0$, $\frac{1}{n} \sum_{i=1}^{n} X_{i j}^{2}=1$, for $j=1, \ldots, p$
- Response: $Y, \sum_{i=1}^{n} Y_{i}=0$

26.65.3 Loss Function

$$
\hat{\beta}_{\lambda}^{L}=\operatorname{argmin}_{\beta} Q_{\lambda}(\beta), \quad \text { where } Q_{\lambda}(\beta)=\frac{1}{2 n}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}
$$

Dual form:

$$
\begin{array}{ll}
\operatorname{argmin} & \frac{1}{2 n}\|Y-X \beta\|_{2}^{2} \\
\text { s.t. } & \|\beta\|_{1} \leq t, \text { for some } t
\end{array}
$$

The L_{2} loss function is more like a ellipse, where the L_{1} ball has corners, where most components are exactly zero, which means LASSO will give sparse solutions.

The loss functions is in red curve and the constraint is in blue. The constraint in each quadrant is a linear function, and formulate a diamond shape. The area of blue diamond is $\left\{\beta:\|\beta\|_{1} \leq t\right\}$. $\hat{\beta}$ is the unconstrained optimum, where $\tilde{\beta}$ is the constrained optimum which gives $\beta_{1}=0$.

26.65.3.1 Sparse Solutions

Any form $\left\{\beta: \sum_{j=1}^{p}\left|\beta_{j}\right|^{q} \leq t\right\}$ for $q \leq 1$ will have corners. When $q \geq 1$, then corner points will become smooth. $q=1$ is the only convex constraint set.

26.65.4 Convex Optimization (Revisited)

Given a optimization problem

$$
\begin{array}{ll}
\operatorname{argmin} & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, h_{j}(x)=0
\end{array}
$$

The KKT conditions for the Lagrange function $L(x, \lambda, v)=f(x)+\sum_{i} \lambda_{i} g_{i}(x)+\sum_{j} v_{j} h_{j}(x)$ is

1. $0=\nabla_{x} L(x, \lambda, v)$
2. $\lambda_{i} g_{i}(x)=0$
3. $g_{i}(x) \leq 0, \lambda_{i} \geq 0, h_{j}(x)=0$

KKT conditions cannot directly be applied to LASSO, we need to introduce the subgradient

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

26.65.4.1 Subgradient

$$
\partial f(x)=\left\{v: \forall y, f(y) \geq f(x)+v^{T}(y-x)\right\}
$$

if f is differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$.
$x^{*}=\operatorname{argmin} f(x) \Longleftrightarrow \forall y, f(y) \geq f\left(x^{*}\right) \Longleftrightarrow f(y) \geq f\left(x^{*}\right)+0(y-x) \Longleftrightarrow 0 \in \partial f\left(x^{*}\right)$. Then KKT(1) now becomes $0 \in \partial_{x} L(x, \lambda, v)$.
Back to the loss fucntion of LASSO:

$$
Q_{\lambda}: Q_{\lambda}(\beta)=\frac{1}{2 n}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}
$$

The subdifferential of the L_{1} norm is

$$
\partial\|x\|_{1}=\left\{v \in \mathbb{R}^{p}:\|v\|_{\infty} \leq 1, v_{s(x)}=\operatorname{sgn}\left(x_{s(x)}\right)\right\}
$$

where $s(x)=\left\{j \in\{1, \ldots, p\} ; x_{j} \neq 0\right\}$ The subdifferential of the Q_{λ} at some vector $\beta \in \mathbb{R}^{p}$ is

$$
\partial Q_{\lambda}=\left\{\frac{1}{n} X^{T}\left(Y-X^{T} \beta\right)+\lambda v: v \in \partial\|\beta\|_{1}\right\}
$$

i.e. for $j=1, \ldots, p, v_{j}=\operatorname{sgn}\left(\beta_{j}\right)$ if $\beta_{j} \neq 0$ otherwise $v_{j} \in[-1,1]$.

Then KKT(1) becomes:

$$
\begin{gathered}
0 \in \partial Q_{\lambda}\left(\hat{\beta}_{\lambda}^{L}\right) \Longleftrightarrow \exists \hat{v} \text { s.t. } \hat{v}_{j}=\operatorname{sgn}\left(\hat{\beta}_{\lambda, j}^{L}\right) \text { if } \hat{\beta}_{\lambda, j}^{L} \neq 0, \text { and } \hat{v}_{j} \in[-1,1], \text { otherwise } \\
\text { s.t. } \frac{1}{n} X^{T}\left(Y-X^{T} \hat{\beta}_{\lambda}^{L}\right)=\lambda \hat{v}
\end{gathered}
$$

This is referred as the KKT condition for the LASSO.

